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PREFACE.

————

THE authors were led to prepare this series mainly that they
might provide themselves with text-books containing an ele-
mentary view of the present state of the Physical Sciences.
The general plan and method of the Course were worked out
by Mr. Gillet, and thoroughly tested in the class-room by oral
teaching, before there was any thought of publishing the books.

The authors felt, front ‘experience, that the elementary text-
books on Physics now in use are, as a class, deficient in two
important particulars. First, they are sadly behind the times ;
and, secondly, they fail to give any systematic development of
leading principles. A great revolution has taken place during
the last twenty-five years in the departments of Chemistry, Elec-
tricity, and Heat. In Chemistry this revolution has been so
complete that the present theories of the science are currently
known as “Modern Chemistry.” The hypothesis of electric
fluids has been swept away, and Heat has been shown to be a
mode of molecular motion. It is but recently that Helmholtz
has given the correct explanation of the formation of the vowel
sounds, of resultants, and of dissonance ; and that Tyndall and
others have investigated the subject of sounding and sensitive
flames. In Optics, too, the cause of long and short sightedness,
and the way in which the eye adjusts itself for near and distant
objects, have been correctly understood only within a few years.
In Astronomy, also, the analysis of solar and stellar light by
means of the spectroscope has led to discoveries of the highest
interest ; while recent investigation has thrown much light upon
the nature of the photosphere and spots of the sun.

As the principles of physical science are all established by
facts of observation, the method has been adopted in this Course
of first establishing the fact by experiment, when this is possi-
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iv PREFACE.

‘:‘ :ble, and of tlh,en drawmg out the principle. The summaries
¢ ‘always* comé 4t the eng of a topic, not at the beginning.

& te o<t Thetanthdrs beheve that the simplest experiments, and those

RRELCLAY require” the slmp]est apparatus, are usually the best, and

they have therefore sought to give such experiments in all cases.

From their experience in teaching, the authors strongly rec-
ommend that each lesson be explained and illustrated with the
class before being given out to be studied.

In preparing the present volume, the material for the Sounnp
has been drawn almost wholly from Tyndall’s “ Lectures.” This
valuable work is now brought within the reach of all teachers
by the neat reprint of the Appletons (New York, 1867).

Much of the material for the LiGHT has been taken from
Ganot (Traité Elémentaire de Physique, 12¢ édit., Paris, 1866),
Herschel (Familiar Lectures on Scientific Subjects, London,
1867), and Potter (Physical Optics, London, 1856).

In treating of HEAT, we have drawn mainly from Tyndall’s
“Lectures” and papers, and from Stewart (Heat, Clarendon
Press Series, London, 1867).

In ELECTRICITY we have been greatly indebted to Faraday’s
“Researches,” to Noad’s “ Manual of Electricity, to Dr. Fergu-
son’s “Electricity” in Chambers’s Educational Course (Edin-
burgh, 1866), and to Professor Cooke’s ¢ First Principles of
Chemical Philosophy” (Cambridge, 1868).

The chapter on the PHYSICS OF THE ATMOSPHERE is main-
ly condensed from Buchan’s ¢ Handy Book of Meteorology ”
(second edition, Edinburgh, 1868). The teacher will do well to
get this book, and also Professor Loomis’s excellent “ Treatise
on Meteorology ” (recently published by the Harpers), to which
we have once or twice referred.

CAMBRIDGE, November 13, 1868.
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THE ELEMENTS OF NATURAL
PHILOSOPHY.

——
1
BRSFASESFIURRIT

1. Solids.— If we take hold of any part of a stone and
lift it up, the whole stone comes up. The parts of the
stone hold together firmly, so that when one part is moved
they all move in a piece. Wood, iron, lead, and many
other bodies, are like stone in this respect. Such bodies
are called so/ids.

2. Liguids.— If a goblet be filled with water and slowly
tipped, the water runs out, not all together, but a part at a
time. The parts of the water do not hold together so firmly
as those of the stone. When the water is poured from the
goblet, all its parts do not move in a piece, as those of a
solid would do were it tipped from the same goblet. Alco-
hol, quicksilver, and many other substances, resemble water
in this respect. Such substances, whose parts move easily
among themselves, are called Zguzds. »

3. Gases.— If water be poured into a goblet from above,
it readily fills. If, however, a goblet be inverted and pressed
down upon water, it does not fill with water. The reason
it does not fill is, that it is already full of air. When it
is inverted and pressed down upon the water, there is
no chance for this air to escape; but when the water is
poured in from above, the air readily escapes from the
mouth of the goblet.
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U8 P it i the goblet is quite unlike either a solid or a
liquid. Air and other substances like it are called gases.

All substances are called matfer. There are, as we have
seen, three states of matler, the solid, the liguid, and the
gaseous.

4. Matter is acted upon by Gravity. — When a stone is
held in the hand, it is felt to press downward. There
is some force drawing it towards the earth. This force is
called gravity.

WEIGHT.

5. The downward pressure which gravity causes a body
to exert is called its wezght.

When different bodies, as iron and wood, are taken in
the hand, it is easy to feel that some are heavier than others,
but it is not so easy to tell exactly how much heavier one
is than another.

6. The Spring Balance. — But the weight of a body may
be made to bend a spring, and, when different bodies are
made to bend the same spring, we can readily tell how
much heavier one 1s than another by seeing how much
more it bends the spring. If it bends the

Fig. 1. - o .
Q o spring twice as much, it is twice as heavy ;
i %= and if three times as much, it is thrice as
s heavy. An instrument for finding the weight

of a body by seeing how much it can bend
a spring, is called a spring balance. One form
of this balance is shown in Figure 1. Tt
consists of a steel spring wound into a coil
: One end of this coil is fastened to a ring,

and the other to a hook. The body to be

weighed is fastened to the hook, and the

whole raised by the ring. The weight of
the body straightens or draws out the spring. A pointer
moving over a plate in front, which is divided into equal
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parts, shows how much the spring has l;yeerg d’a:w o OUts
A body which will straighten the spring a certain amount
is said to weigh a pound; one which will straighten it
half as much, half a pound; one fourth as much, a
quarter of a pound; twice as much, two pounds; and
so on.

7. The Balance. — If a straight rod be supported on a
pivot, in the centre, so that it can turn freely, as shown in
Figure 2, it will remain level or horizontal. If now a pound
of lead be hung from each end of this rod, it will still re-
main horizontal. The two pieces of lead will just balance
each other. If a second pound of

Fig. 2.
lead be hung from one end of the , c =
rod, it will require a second pound JAV=S

at the other end to balance it. If

then we have a number of pieces of lead of different, sizes,
whose weight is known, we can readily find the weight of
any other body by hanging it to one end of the rod, and
adding the pieces of lead to the other end till they balance
it. If one pound of lead will balance it, its weight is one
pound ; if a quarter of a pound of lead will balance it, its
weight is a quarter of a pound ; and so on.

An instrument for finding the weight of a body in this
way is called a balance, and
the pieces of lead or iron
used in weighing it are called
weights. A common form
of the balance is shown in
Figure 3. It consists of a
bar turning on a pivot in
the centre, and having pans
hung from each end for holding the weights and the body
to be weighed.

8. The Steelyard.—1f we have a straight rod balanced
like the one above, with one arm considerably longer than
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thesother; and.a weight of a quarter of a pound is arranged
so that it can slide along the longer arm, it will be found,
on hanging a weight of a quarter of a pound to the end of
the shorter arm, that the weight on the long arm must be
placed just the length of the short arm from the pivot, in
order to balance the weight on the short arm. If a half
pound weight be hung to the short arm, the weight on the
long arm will have to be placed twice the length of the short
arm from the pivot, in order to balance it. If the weight on
the short arm is three quarters of a pound, then the weight
on the long arm must be placed
three times thelengthof the short
arm from the pivot, to balance it;
o and so on. We can then find
s| ¢ I the weight of a body by hanging
P it to the short arm, and seeing
how far the weight on the long
arm must be placed from the
pivot, to balance it.
An instrument for finding the weight of a body by this
method is called a stee/yard. A common form of the steel-
yard is shown in Figure 4.

Fig. 4.

THE CENTRE OF GRAVITY.

9. Centre of Gravity.— In the case of the bar whose
arms are of the same size and of equal length, it has been
seen that, when its centre is supported, the force of gravity
acting upon each arm just balances that acting upon the
other. The same is true when one arm of the bar is
twice as long as the other, provided the shorter arm is
twice as heavy as the longer.

If a circular disc of wood (Figure 5) be pierced at
the centre and supported upon a wire, it will remain at rest
in whatever way it may be turned. In this case, then,
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the force of gravity acting upon the part of the disc to the
right of the support always exactly balances that acting upon
the part to the left of the support. If]; however, one part
of the disc be loaded with lead or other heavy substance, it
will no longer rest equally well in every position. It will
now remain at rest only when the loaded part of the disc is

Fig. s.
IOFOEOEC

either directly under or over the support. It is found on
trial, however, that there is still a point between the loaded
side and the centre, upon which the disc will rest in any
position. In this case also it is clear that the force of
gravity, acting upon the part of the disc to the right of the
support, always exactly balances that to the left of the sup-
port. Such a point can always be found, whatever may be
the size or shape of a body, and of whatever material it
may be made. This point is called the centre of gravity.
The centre of gravity of a body, then, is a point such that
the force of gravity acting upon the part of the body on one
side of this point always balances the force of gravity act-
ing upon the part on the opposite side, no matter how the
body may be placed.

10. The Centre of Gravity noi always in the Body itself-—
If a straight strip of metal or wood be fastened to the sides
of a ring so as to pass through its centre, it will be found
that the ring will rest in any position when the centre is
supported ; and that it will not remain at rest in every
position on any other point. The centre of gravity, then,
of a ring which is exactly alike throughout its whole extent
is at the centre of the ring. If one part of the ring is
heavier than the other, the centre of gravity will be found
to be between the centre and the heavier part,
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When two balls of the same weight are connected by a
straight rod (Figure 6) the centre of gravity will be found
to be at the centre of the rod. If one ball be twice as
heavy as the other, the centre of gravity will be in the rod
at a point twice as near the heavier ball as the lighter
ball. If the heavier ball be three
times the weight of the lighter ball,
the centre of gravity will be thrice
as near this ball as the other.

If the balls are connected by a
curved rod, the centre of gravity will
no longer be in the rod, but in a
straight line which joins the balls. Its distance from
the balls will be as above.

11. Egquilibrium. —If the loaded disc in Figure 5 be
placed with its loaded part down, it remains at rest.
If it be turned a little either way and then let go again,
it returns at once to its former position of rest. If now
it be carefully poised with the loaded side up, it can be
made to rest; but if we turn it the least either way, it
does not go back to the position of rest which it has
just left, but at once takes a new position of rest with
the loaded side down.

The disc @, which is of the same material throughout,
remains at rest equally well in any position.

When a body is at rest it is said to be # eguilibrium.
When it is at rest in such a position that on being slightly
disturbed it again returns to this position, it is said to be
in stable equilibrium. When it is at rest in such a position
that on being slightly disturbed it seeks a new position
of rest, it is said to be in wnstable equilibrium. When a
body remains at rest equally well in any position, it is
said to be in indifferent equilibrium.

12. The Centre of Gravity always secks the Lowest Point.
— We have just seen that when the loaded disc (Figure

Fig. 6.
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g) is in the position 4, if we disturb it in the least it falls
into the position ¢; and that, if it be moved from this
position ¢, it will at once return to it. It will be seen
that, in this position ¢, its centre of gravity is lower than
in any other position. And so in every case it will be
found that the centre of gravity of a body seeks the °
lowest position which it can take.

13. Zhe Stability of Egquilibrium.— A sphere which is
of the same material throughout, is in ndifferent equilib-
rium (11) on a level surface, because the centre of gravity
can fall no lower than it is. If a portion of the upper part
of the sphere be removed by making a hole there (Fig-
ure 7), the equilibrium becomes sZa- Fig. 7.
ble, because the centre of gravity is L
brought below the centre of the
sphere, and will have to rise if the (
sphere is moved either way. If the upper part of the
sphere be loaded by putting into the hole a cylinder which
more than fills it, the equilibrium becomes wzustadle, be-
cause the centre of gravity is now brought above the centre
of the sphere, and any motion either way tends to lower it.

When a body is so situated that its centre of gravity is
raised by tipping it in any direction, it is in s/able equilib-
rium ; when any disturbance of the body tends to lower
its centre of gravity, it is in wnstable equilibrium ; when on
being disturbed its centre of gravity neither rises nor falls,
it is in sndifferent equilibrium.

In Figure 8, g¢ shows the path which the centre of
gravity ¢ must take when the body is tipped. Until g
reaches the point ¢ the body tends to go back, because
in so doing the centre of gravity would fall ; but as soon
as g passes ¢ the body tends to go over, because in so
doing the centre of gravity would fall. % ¢ shows how
much the centre of gravity must be raised to overturn the

body ; and this distance is seen to be greater when the
1%




o NATURAL PHILOSOPHY.

Fig. 8.
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boty is resting on the side ¢ 4 than when it is resting on
the side # . It will be found that much more force will
be required to overturn it in the latter case than in the
former. The more, then, the centre of gravity of a body
has w be raised in order to overturn it, the more stable
its eyuilibrium.

It will also be seen from Figure 8 that the broader the
base or a body compared with its height, the more stable
its equilibrium.,

If, however, the body is not upright, it may be in un-
stable equilibrium even when the base is broad. In Fig-
ure 9 geis the path which the centre of gravity & must

take when the body @ dc¢d is overturned, and it will be
seen that, as soon as g is moved at all in the direction ge,
it begins to fall and the body will go over. In the body
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I/mno the centre of gravity g is not supported, and the
body will fall over of itself.

It is evident, then, that a body may lean and yet be
in equilibrium, provided the centre of gravity is directly
over any point of the base. If this point Fig. 10.
be well within the base, the equilibrium
may be very stable, as in the case of the
famous leaning tower at Pisa.

On the other hand, a body may be in
stable equilibrium even when the base is
very narrow. Thus a cork may rest upon
the point of a needle, and yet be in stable
equilibrium. This may be done by sticking two forks
into the cork, as shown in Figure 1o. The forks bring the

Yk centre of gravity below the point of
support, so that the cork cannot be
tipped without raising the centre of
gravity. In the same way, the image
in Figure 11 is balanced on its toe
by means of the two heavy balls be-
neath. So, too, in the ¢ prancing
horse” (Figure 12) the centre of grav-
ity is brought below the point of sup-
port by the leaden ball at the end of
the curved rod.

14. How ‘o
Jind the Cenire
of Gravity of a
Solid.—When a stone, as in Fig-
ure 13, is hung by the cord 4,
the centre of gravity must be di-
rectly under the point of support ;
that is, somewhere in the line 4
AB. If the same stone be hung by
the cord C, its centre of gravity

.
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must still be below the point of support, somewhere in
the line C D. Since the centre of gravity is in both the
lines A B and C D, it
must be at the point G,

where they cross.
To find the centre of

gravity of a solid, then,
suspend it from any
point of its surface by
>4 means of a cord, and no-
tice the direction which
the cord takes. Then
suspend it from another
point, and again notice the direction of the cord. The
point where lines drawn in these directions would cross

Fig. 13.

“ each other will be the centre of gravity.

SUMMARY.

Matter exists in tkree states. (1-3.)

Matter is acted upon by gravity. (4.)

Gravity gives bodies weight. (5.)

The weight of bodies may be found by means of the
spring balance (6), the balance (7), or the steelyard (8).

A point can always be found such that the force of
gravity acting upon the part of a body to the right of it is
always balanced by the force of gravity acting upon the
part to the left of it, no matter in what position the body
may be placed. This point is called the centre of gravity,
and sometimes lies within a body and sometimes without
it. (9, 10.)

When a body is at rest it is said to be iz eguilibrium.
Its equilibrium may be either stable, unstable, or indifferent

(11.)
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The centre of gravity always seeks the lowest position
which it can take. (12.)

The stability of the equilibrium of a body depends upon
the position of the centre of gravity, and upon how much
it must be raised to overturn the body. (13.)

The centre of gravity of a solid may be found by sus-
pending the solid from two different points of its surface
by means of a cord. (14.)

PRESSURE OF LIQUIDS.

15. How to find the Weight of a Liguid. — If a cup be
placed in one pan of a balance and weighed, and then
filled with water and weighed again, it will be found to
weigh more in the second case. This shows that liquids,
as well as solids, are acted upon by gravity, which
causes them to exert a downward pressure. The weight
of the water in the cup is the weight of the cup when
full of water /Jess the weight of the empty cup. If the
cup is filled with quicksilver and weighed again, it will
be found to weigh much more than when filled with
water. This experiment shows that some liquids are
heavier than others.

16. Liguids when acted upon by Gravity press, not only
downward, but also upward and sideways. —Fix a long
tube into the top of a wooden cask, and put a stop-cock
into the top, and another into the side of the cask.
On filling the cask and the tube with water, and opening
the stop-cocks, the water is driven out of both. This
shows that the water in the cask, when acted upon by
gravity, presses upwards and sideways as well as down-
ward.

The pressure which liquids exert sideways is called Ja#
eral pressure.

17. The Upward, Downward, and Lateral Pressures ar¢
equal for the same Depth of Liguid.—In Figure 14 we
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" have a glass vessel, into the top of
which are inserted three glass tubes
of exactly the same size, with their
mouths at the same distance from
the bottom. One of these tubes
opens downward, one upward, and
one sideways. On filling the vessel
with water, by means of the funnel,
the liquid rises to the same height
in all three tubes. Now it is the upward pressure which
causes it to rise in the tube opening downward, the lat-
eral pressure which causes it to rise in the tube opening
sideways, and the downward pressure which causes it to
rise in the tube opening upward ; and since the tubes
are all of the same size, and since the water rises to
the same height in each, these pressures are all evidently
equal.

The upward, downward, and lateral pressures are then
the same for the same depth of liquid.

18. The Upward, Downward, and Lateral Pressures of
a Liguid increase with the Depth, but are not altered by the
Size or Form of the Vessel whick holds the Liquid. — The
more water we pour into the vessel, in Figure 14, the
higher the water rises in the tubes. The upward, down-
ward, and lateral pressures increase with the depth of the
liquid.

If the tube into which the liquid was poured be re-
moved from the vessel, and other tubes of different sizes
and shapes, but of the same height, be put in its place
and filled with water, the liquid rises to exactly the
same height in the tubes; showing that the upward,
downward, and lateral pressures of a liquid are not
altered by the size or shape of the vessel which .holds
it.

For this reason, when vessels of different sizes and
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shapes are connected, as shown in Figure 15, if a liquid
be poured into one of them it will rise to the same height
in all.

19. When a closed Vessel is filled with a Liguid, and any
additional Pressure is brought to bear on any Particle of this
Liguid, every Particle is made to exert the same additional
Pressure, upward, downward, and sideways. — Suppose the
four tubes in Figure 14 are all of exactly the same size, and
that the vessel is full of water. Pour water into the left-
hand tube until it rises to the line ¢4, The water rises in
all the tubes to the same height. The water poured into
the first tube brings an additional pressure to bear upon
the particles of water at its mouth, and it is the additional
pressure which the particles at the end of the other tubes
are made to exert that causes the water to rise in them.
Now the water rises to the same height in all the tubes, and
since they are all of the same size there must be the same
number of particles at the end of each ; therefore, the
particles at the end of the three tubes are made to exert
* the same additional pressure upward,‘ downward, and side-
ways, as that brought to bear upon the particles at the
end of the left-hand tube.

At whatever depth these three tubes open, the water
will be made to rise in them all to the line ¢4, showing
that all the particles of the liquid are made to exert the
same additional pressure upward, downward, and sideways.

That the particles at different depths are all made to
exert the same additional upward pressure is shown by the
apparatus in Figure 16. The three tubes & ¢ and & open
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at different depths, and the vessel is first filled with water,

Fig. 16, which rises in ¢and & to the
line ¢/ Pour water into the
tube « till it rises to the line
&/, and it will rise to the same
line in all the tubes.

This explains the action of
the Aydrostatic bellows, repre-
sented in Figure 17. It con-
sists of two boards connected by a band of leather,
forming a closed vessel, and a tube is in- Fig. 17.
serted in the top or at the side. Weights
are placed on this board, and water is poured
into the tube. As the water fills the tube, the
board rises with the weights upon it. If the
surface of the board is roo times as large as
the end of the tube, one pound of water in the
tube will balance 100 pounds on the board.
As the surface of the board is 100 times as
large as the end of the tube, there are 100
times as many particles of water in contact
with the board as there are at the end of the
tube, and as each particle is made to exert
the same pressure, one pound of water in the tube ought
to balance 100 pounds on the board.

The particles of a liquid under pressure act like bent
springs pressing equally in all directions. In an open ves-
sel, gravity acting upon the upper layer of particles makes
them press upon those of the second layer, which then act
like bent springs against all their neighbors, which in turn
become as bent springs. In this way the pressure of the
upper layer is transmitted equally throughout the whole
mass. But gravity pulls down the second layer as well as
the first, and their pressure also is transmitted through all
the mass below, so that the third layer receives twice the
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pressure of the second. In the same way the fourth layer
receives three times the pressure of the second ; and so on.
When pressure is exerted upon any particle of a liquid in a
closed vessel, it is made to act like a.bent spring upon all
its neighbors, which in turn act in the same way either
upon other particles or upon the sides of the vessel.
20. The Hydrostatic Press.— It follows, from what has
just been shown, that by means of a liquid a small pres-
sure upon a small surface may be made to exert a great
pressure upon a large surface. In Figure 18 we have two
cylinders, with a plunger, or piston, in each. Suppose that

Fig. 18,

—— J

the surface of the larger piston is thirty times that of the
smaller ; if the latter is pressed downward by a weight
of one pound, an upward pressure of one pound will be
brought to bear upon each portion of the surface of the
large piston equal to that of the small piston. The whole
upward pressure on the large piston will then be thirty
times the downward pressure on the small one. If the
surface of the larger piston had been sixty times that of
the smaller, one pound on the latter would have balanced
sixty on the former ; and so on.

Advantage is taken of this fact in the construction of
the hydrostatic press, shown in Figures 19 and 20. The
two cylinders 4 and B are connected by the pipe &
The piston @, in the small cylinder 4, is worked by the

handle O, and forces water into the large cylinder 5,
B
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Fig. 19.

where it presses up the piston C. If the end of the pis-
ton Cis 1,000 times as large as that of the piston a, a
pressure of 2 pounds on & would exert a pressure of 2,000
pounds, or one ton, upon C. If a man in working the
handle O forces down the piston @ with a pressure of 50
pounds, he would bring to bear upon C a pressure of 25
tons.

This press is used for pressing cotton, hay, cloth, etc.,
into bales, for extracting oil from seeds, testing cannon,
boilers, etc., and for raising ships out of the water.

21. Springs and Artesian Wells. — All natural collec-
tions of water illustrate the tendency of a liquid to find
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Fig. 20.
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its level. Thus, the Great Lakes of North America may
be regarded as a number of vessels connected together,
and hence the waters tend to maintain the same level in
all. The same is true of the source of a river and the sea,
the bed of the river connecting the two like a pipe.

Springs illustrate the same fact. The earth is composed
of layers, or strata, of two kinds; those through which
water can pass, as sand and gravel, and those through
which it cannot pass, as clay. The rain which falls on
high ground sinks through the soil until it reaches a layer
of this latter kind, and along this it runs until it finds
some opening through which it flows as a spring. ‘

It is the same with Artesian Wells. These wells derive
their name from the Province of Artois in France, the first
part of Europe where they became common. It would
seem, however, that wells of the same kind were dug in
China and Egypt many centuries earlier.

In Figure 21, suppose 4 B and C D to be two strata of
clay, and K KX to be a stratum of sand or gravel between
them. The rain falling on the hills on either side will
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filter down through this sand or gravel, and collect in the
hollow between the two strata of clay which prevent its

escape. If now a hole be bored down to A X the water,
striving to regain its level, will rise to the surface at /7 or
spout out to a considerable height above it.

The Artesian well at Grenelle, in France, has a depth of
548 metres, or about 1800 feet, and the water flows out at
the rate of 656 gallons a minute, or nearly a million gallons
a day. One in this country, at St. Louis, is 2,199 feet deep,
and affords 75 gallons a minute.

22. A Body is buoyed up when placed in a Liguid. — If a
stone be fastened to one pan of a hydrostatic balance and
weighed under water, it will seem to be lighter than when
weighed in the ordinary manner in the air.

We have already seen that at the same depth in a liquid
the upward and downward pressures just balance, but that
these pressures increase with the depth. The bottom of
the stone in the above experiment being deeper in the wa-
ter than the top, the upward pressure of the water against
the bottom of the stone is greater than the downward pres-
sure of the same liquid upon the top of the stone. The
stone is accordingly lifted up a little when plunged under
water, and being thus buoyed up, seems to be lighter than
in the air.
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23. A Body is buoyed up in Waler by a Force just egial
to the Weight of the Waler which it displaces. — In Figure
22, A is a cup into which the cylinder B exactly fits. This
cup then will hold just as much water as 5 displaces when
under water. Hang this cup and cylinder to the hydro-
static balance, and balance it with weights. Immerse the
cylinder B in a vessel of water, and we find that it is more
than balanced by the weights. Now, by means of a drop-
ping tube fill the cup A with water
from the vessel. When the cup is full,
the cup and cylinder are seen to be
again just balanced by the weights.
This shows that a body when im-
mersed in water is buoyed up by a
force just equal to the weight of the
water which it displaces.

1t is evident from this that, if a solid
weighs exactly as much as the water it
displaces when fully immersed, it will
neither rise nor sink in the water. If
it weighs more than the water it dis-
places, it will sink ; if less, it will rise.
When a body floats upon the water, it
displaces exactly its own weight of wa-
ter. It is well known that a lump of
iron will sink, but the same lump of
iron may be hammered out into a ves-
sel which will displace its own weight of water without
being wholly immersed.

In this way, ships may be made of iron whlch will float
upon water as well as ships made of wood.

Fig. 22
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SPECIFIC GRAVITY.

24. Substances vary in Densily. — When the same bulks
of different solids and liquids are weighed, their weights
are found to be very different. A substance which weighs
more, bulk for bulk, than another substance is said to be
more dense, or to have a greater density. It is often desira-
ble to know the relative weights of the same bulks of
bodies which vary in density. In such cases, it is con-
venient to compare the weight of each substance with the
weight of the same bulk of some given substance. Water
is taken ‘as the substance with which the weights of other
solids and liquids are compared. The weight of a given
substance compared with the weight of the same bulk of
water, is called its specific gravity.

25. Specific Gravily of Solids. —To find the specific
gravity of a solid or liquid, we must know the weight of
the substance and that of the same bulk of water.

The weight of the solid can be found in the ordinary
way. The weight of a bulk of water equal to that of the
solid can then be found by weighing the solid in water, and
subtracting its weight in water from its weight in air.
The difference of these weights is, as we have seen (23),
just equal to the weight of the water it displaces, and this
is, of course, a bulk of water just equal to its own bulk.

26. Specific Gravity of Liguids.— The specific gravity of
liquids is most conveniently found by means of an instru-
ment, shown in Figure 23, called a Aydrometer. 1t consists
of a hollow glass cylinder, with a stem and scale-pan above,
and a small bulb filled with mercury below, by which it is

- made to float upright in a liquid. The instrument is placed
in water, and weights are added until it sinks to a point
marked upon the stem. The weight of the hydrometer,
together with the weights in the pan, is equal to the weight
of the water displaced (23). If now the instrument be
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placed in another liquid whose density is not the same as
that of water, as alcohol, and made to sink by weights to
the mark on the stem, the weight of an equal bulk of that
liquid can be found. The specific gravity of the liquid will,
of course, be the weight of the liquid divided by the weight
of the water.

A more common form of hydrometer is shown in Figure
24. It consists of a glass tube and bulb loaded with mer-
cury at the bottom. This, when put into a liquid in which
it will float, always displaces just its own weight (23).
It is first put into pure water, and the point to which it
sinks is marked upon the stem. If it be now put into
a liquid of less density, it will sink deeper; if into one
of greater density, it will not sink so deep. By means of
the scale on the stem, the specific gravity of the liquid
into which it is put is indicated.*

* See Appendix, I.
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SUMMARY.

Liguids have weight as well as solids (15). When acted
upon by gravity they press upward, downward, and side-
ways (16).

The upward, downward, and lateral pressures are always
equal for the same depth of the liquid (17).

These pressures ucrease with the depth of the liquid, but
are not altered by the size or shape of the vessel which holds
the liquid (18).

When any pressure is brought to bear upon one particle
of a liquid, every particle of the liquid is made to press
with the same force upward, downward, and sideways (19).

On this account, when a small force acts upon a few par-
ticles of a liquid, an enormous force may be brought to
bear on a large surface in contact with the same liquid.
Advantage is taken of this fact in the construction of the
hydrostatic press (20).

Springs and Artesian wells illustrate the tendency of wa-
ter to seek @ level in connected vessels (z21).

A body is buoyed up in water by a force equal to the
weight of the water which it displaces (22, 23).

The specific gravity of a solid or liquid is the weight of
the solid or liquid compared with the weight of the same
bulk of water (24).

To find the specific gravity of a solid or a liquid, we
must know the weight of the substance and that of the
same bulk of water.

The weight of a bulk of water equal to that of the solid
can be found by weighing the solid in air and in water
(25). ’

The specific gravity of a liquid may be found by means
of a hydrometer (26).
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PROBLEMS.

WEIGHT OF LIQUIDS.

1. A glass flask when full of water weighs 180 grammes.*
The flask itself weighs 84 grammes. How many grammes
of water does the flask hold?

2. The same flask when full of mercury weighs 1382
grammes. How many grammes of mercury does it hold ?

3. The same flask full of alcohol weighs 160 grammes.
How many grammes of alcohol does it hold ?

4. The same flask full of sulphuric acid weighs 220
grammes. How many grammes of sulphuric acid does it
hold ?

THE PRESSURE WHICH LIQUIDS EXERT BY REASON
OF THEIR WEIGHT.

&5 In these problems it is assumed that in liquids the
pressure increases at exactly the same rate as the depth.

5. When water is one centimetre deep in a vessel it ex-
erts a pressure of one gramme on every square centimetre
of surface at the bottom of the vessel. What would be the
pressure exerted upon every square centimetre of surface
at the bottom, if the water in the vessel were 3 centimetres
deep ?

6. What would be the pressure upon g9 square deci-
metres of surface at the bottom, if the liquid were 6
centimetres deep?

7. What upon 13 square decimetres at the bottom, if
the liquid were 17 centimetres deep?

8. A closed vessel is 3 decimetres deep, and has a tube
projecting from the top to the height of one metre. The
bottom of the vessel has a surface of 50 square decimetres,

° * See French Weights and Measures, p. I14.
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and the vessel is filled with water to the top of the tube.
What is the whole pressure upon the bottom of the
vessel ?

9. What would be the pressure upon a square centimetre
of surface on the side of the above vessel, the centre of the
surface being 3 centimetres from the bottom ?

1o. What would be the pressure upon a square centi-
metre of surface at the top of the vessel?

11. What would be the pressure upon the whole upper
surface of the vessel, supposing it to contain 5o square
decimetres ?

12. A cubical vessel, every side of which is a square
metre, is filled with water. What would be the pressure
upon its bottom ?

13. What would be the pressure upon each of its
sides ?*

14. Suppose the top of the above vessel were closed
and a tube one metre in length were inserted into it,
on filling the tube to the top what would be the pres-
sure exerted upon the top of the vessel?

15. What would be the pressure upon the bottom of the
vessel when the tube is full of water?

16. What would be the pressure upon the sides of the
vessel in the last case ?

THE HYDROSTATIC PRESS.

17. The end of the small piston in a hydrostatic press
has a surface of 10 square centimetres ; and the end of the
large piston a surface of a square decimetre. A pressure
of 10- kilogrammes upon the small piston would bring
what pressure to bear upon the large piston?

* To find the pressure upon any surface at the sides of a vessel,
take the awerage depth of the surface, that is, the distance from the
top of the water to the middle of that surface.
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18. If the small piston be the same as above, and the
and of the large piston contain a square metre of surface,
5 kilogrammes upon the small piston will cause what pres-
sure to be brought to bear upon the end of the large
piston?

19. A pressure of 75 kilogrammes on the small piston
would cause what pressure to be exerted upon the end of
the large piston?

THE BUOYANCY OF LIQUIDS.

5" A cubic centimetre of water weighs one gramme.

20. A body weighs 50 kilogrammes in air, and has a
bulk of 40 cubic decimetres. How much does it weigh
in water? :

21. A stone weighs 8o kilogrammes in the air, and 55
kilogrammes in water. What is its bulk ?

22. A hollow vessel of copper weighs one kilogramme.
What must be its bulk in order that it may just float in
water ?

23. A hollow vessel of iron weighs 15 kilogrammes.
What must be its bulk in order that it may sink one half
in water ?

24. A boat displaces 12 cubic metres of water. What
is its weight?

SPECIFIC GRAVITY.

25. A body weighs 150 hectogrammes in air, and weighs
2 kilogrammes in water. What is the weight of a bulk of
water equal to that of the body?

26. A flask full of water weighs 62 grammes: a piece
of lead weighs 44 decagrammes in the air. It is put into
the flask, and the flask is filled with water. It is found
that the lead and water together weigh 462 grammes.
What is the weight of a bulk of water equal to that of
the lead ?
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27. A piece of lead weighs 56 grammes in the air, and
51 grammes in water. What is the specific gravity of
lead ?

28. A flask holds 75 grammes of water: a lump of
copper, which weighs 160 grammes in the air, is put into
the flask, and it is found that the water and the copper
together weigh 219 grammes. What is the specific gravity
of copper?

29. The specific gravity of iron is 7.8. What weight
of water will 45 kilogrammes of iron displace ?

30. The specific gravity of zinc is 7.2. What is the
bulk of go kilogrammes of zinc?

31. A piece of wood, which weighs 25 grammes in the
air, is fastened to a piece of iron whose weight is 8o
grammes ; and on immersing both in water and weighing
them, it is found that they together weigh 45 grammes.
What is the weight of the water displaced by the wood ?

32. A piece of wood, weighing 42 grammes, is fastened
to a piece of zinc weighing 86 grammes, and both are
weighed under water, and are found to weigh 34 grammes.
What is the specific gravity of the wood ?

33. A flask weighing 20 grammes weighs 430 grammes
when full of water, and 5555 grammes when full of mer-
cury. What is the specific gravity of mercury?

34. A hydrometer weighing 50 grammes requires a
weight of 8o grammes to sink it to the neck in water, and
a weight of 135 grammes to sink it to the same depth in
sulphuric acid. What is the specific gravity of sulphuric
acid ? '

35. A vessel holds 100 kilogrammes of water. How
much mercury would it hold?

36. How much alcohol will it hold, if the specific gravity
of alcohol is .79 ?
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THE PRESSURE OF GASES.

27. Gases have Weight. — Weigh very carefully a thin
copper globe when filled with air; then exhaust the air
from it by means of the air-pump, and again weigh it. It
will be found to weigh less in the last case than at first.
This shows that air has weight. In like manner, it may
be shown that all gases have weight.

28. Gases, like Liguids, press wpward, downward, and
sideways. — Fasten over the mouth of a belljar, open at
both ends (Figure 25), a piece of india-rubber, and place

the belljar on the plate of the air-pump, and exhaust the
air from under the rubber. The rubber will be forced into
the jar, showing the downward pressure of the air. If a
belljar, with its mouth at the side, be closed, as before,
with a piece of india-rubber, on exhausting the air from
the jar the rubber is forced into it. This shows the
lateral pressure of the air. If the neck of the jar is bent
around still farther, so that it shall open downward, and
the mouth is closed as before, on exhausting the air the
rubber is forced into the jar. This shows the upward
pressure of the air.

29. T%e Hand-Glass.— If the first bell-jar in Figure 25
is small enough at the top to be covered with the palm
of the hand, and the air be exhausted from it when
thus covered, the hand will be held down with consider-
able force by the pressure of the air upon it
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If a wet bladder be tied over the same belljar and dried,
and the air be exhausted as before, the bladder will burst
with a loud noise. These two experiments show the down-
ward pressure of the air.

30. The Magdeburg Hemispheres.— Figure 26 represents

Fig. 27.

\l/

Fig. 26.

two brass hemispheres, some four inches in diameter, the
edges of which are made to fit tightly together. The whole
can be screwed to the air-pump by means of the stop-
cock at the bottom. While the hemispheres contain air,
they can be separated with ease, since the outward pressure
is just balanced by the inward pressure ; but when the air
within is pumped out, it is very hard to pull them apart.
Since it is equally difficult to do this, in whatever position
the hemispheres are held, the experiment shows that the
air presses in all directions.

This piece of apparatus is called the Magdeburg Hemi-
spheres, from Otto von Guericke, of Magdeburg, by whom
it was invented.
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31. The Weight Lifter.—In Figure 28, 4 1s a strong
glass cylinder, open at both
ends; B a piston, working air-
tight within it; and C a brass
plate, covering it closely, and
having a hole in the centre to
which a hose may be screwed
for connecting it with the air-
pump. When the air is ex-
hausted from the cylinder, the
piston Trises, even if a heavy
weight is hung from it as shown
in the Figure.

This experiment affords a
very striking illustration of the
upward pressure of the air.

32. The Expansive Force of Gases.—If an india-rubber
bag, partially filled with air, be closed
air-tight and placed under the re-
ceiver of the air-pump, the bag fills
out, as shown in Figure 29, when the
air is exhausted from the receiver.
The same would be true if the bag
were partially filled with any gas.
A]l gases then tend to expand.

33. The Air-Pump. — An instru.
ment for removing the air from a vessel is called an air-
pump. One form of such a pump is.shown in Figure 3o.
It consists of a cylinder, in which a piston moves air-tight.
In this piston is a valve opening upward. At the top of
the cylinder is another valve also opening upward. The
bottom of the cylinder is connected with the pump-plate
by means of a tube. On this plate is placed the vessel
from which the air is to be exhausted. This vessel is called
che 7ecerver. The piston is worked by means of the handle.
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As the piston is forced down the expansive force of the ait

below pushes open the valve in the piston to get into the

space left behind it. When the piston is drawn up again

the expansive force of the air above closes this valve and

opens the valve at the top of the cylinder, so that this air

escapes. The expansive force of the air in the tube
Fig. 30.

and receiver causes it to fill the space behind the piston.
When the piston is again pushed down, the downward
pressure of the air outside closes the valve at the top of
the cylinder, while the expansive force of the air below
opens the valve in the piston, and some of the air passes
through it. On drawing up the piston again this air is
removed as before. By continuing this process the air
is nearly all withdrawn from the receiver. It cannot be
wholly withdrawn, because as it becomes more and more
exhausted, the expansive force becomes less and less, until
at'last it is not sufficient to open the valve in the piston.
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34. A Body is buoyed up in the Air.— If a hollow
sphere be balanced in the air by a piece of lead, and then
the whole apparatus be put under the receiver of an air-
pump and the air exhausted, the lead will no longer bal-
ance the sphere. This shows that a body is buoyed up
in the air as well as in a liquid (22). Bodies seem to be
lighter in the air than in a wacxum (that is, a space from
which the air has been exhausted), for the same reason that
a body seems lighter in water than in the air. The upward
pressure of the air upon the bottom of the body is some-
what greater than the downward pressure upon the top of
the body. A body in the air, then, is buoyed up by a force
just equal to the weight of the air which it displaces. If a
body weighs more than the air it displaces, it sinks through
the air ; if it weighs less than the air it displaces, it rises in
the air.

35. Balloons. — Balloons rise in the air because they are
filled with some substance which makes them lighter than
the air which they displace.

If a glass bulb and tube filled with
air be arranged, as in Figure 31, with
the end of the tube under water, and
the bulb be heated by means of a
lamp, the air in it expands, and a
part of it is driven out in bubbles
through the water. This shows that
air expands when heated.

Paper balloons are sometimes made which are sent up
by fastening a light just under an opening in the bottom of
the balloon. The light heats the air inside, and causes it
to expand, and a part to pass out. The remainder is then
lighter than the air displaced by the balloon, and it con-
sequently rises. Large balloons are made of strong silk,
and filled with some very light gas, such as coal gas.

This makes the balloon so much lighter than the air
p% c

Fig. 31
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it displaces, that it will rise, carrying a car with two or
three persons in it.

Balloon ascensions are now quite common, and it is
possible that the time will come when by their aid we may
navigate the air as we now navigate the sea. As yet, how-
ever, it has been found impossible to guide them. When
once in the air they are at the mercy of the wind, and go
in whichever way it happens to be blowing.

36. The Atmospheric Pressure will sustain @ Co/umn of
Liguid in an inverted Vessel.
— If a glass jar be filled with
water and inverted in a dish
of water, care being taken to
keep the mouth of the jar
all the time under water,
the liquid will not flow out
.. of the jar when it is raised.

} ] If, however, the jar be par-
tially filled with water, and
inverted in a shallow dish
of water, and placed un-
der the receiver of an air-
pump, and the air be ex-
hausted, the water will flow
out from the jar; showing
that it is the pressure of
the atmosphere on the sur-
face of the water in the dish
which keeps the water in the
inverted jar. If mercury or
alcohol is used instead of

water, the result is the same.

37. The Almospheric Pressure will sustain a Column
of Mercury about 30 Inches high.—1If a glass tube closed
at one end and about 34 inches long be filled with

Fig. 32.
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mercury, and inverted in a cup of mercury, as shown
in Figure 32, a part of the mercury will run out, leaving
a column about 3o inches high in the tube.

38. The Atmospreric Pressure is-equal to about 15 Pounds
lo the Square Inch.— Suppose the tube in the above ex-
periment were one inch square, it follows, from the way
in which liquids press, that the downward pressure at the
bottom of the tube would be just equal to the downward
pressure of the atmosphere on each square inch of the.
surface of the mercury in the vessel

If now we weigh the mercury in the tube, we shall find
that there are about 15 pounds of it. This column of mer-
cury then exerts a pressure of 15 pounds at the bottom
of the tube. The air then presses with a weight of 15
pounds upon every square inch of surface. We do not
perceive this great pressure, because the air presses equally
in every direction.

39. The Atmospheric Pressure varies from Day lo Day.
— If a glass tube be filled with perfectly pure mercury, so
that it shall not become tarnished, and then inverted in a
cup of mercury and left standing, and the height of the
mercury column noted from day to day, it will be found
to vary considerably, being sometimes as much as two
inches higher than at other times. This variation in the
height of the mercury column must be due to changes in
the pressure of the air.

40. The higher the Place, the less the Atmospheric Pres-
sure. — If the height of the mercury in the tube be noticed
at the base of a mountain, and it be then carried to the
top of the mountain and the height of the ‘mercury again
noticed, it will be found considerably less in the latter .
case. This shows that the atmospheric pressure becomes
less, the higher we go above the surface of the earth.

The atmosphere is a great ocean of air which surrounds
the earth, and at the bottom of which we live, as the fishes
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live at the bottom of the sea. The changes in the height
of the mercury just described show that the pressure in-
creases with the depth. The daily variations in the pres-
sure are probably due to large waves which run over the
surface of this ocean.

41. The Barometer. — An instrument for measuring the
pressure of the atmosphere is called a barometer. One
form of it is shown in Figure 33. It consists
of a cup and tube filled with mercury, as in the
experiment illustrated by Figure 32. These
are fastened to a wooden frame. At the up-
per part of the tube there is a scale with a
sliding index, for measuring the height of the
mercury. /7 is a thermometer.

The mercury is often put into a leather bag
instead of an open cup as here, since it is less
likely to be spilled. As the leather is flexible
the pressure of the air is brought to bear upon
the mercury through the bag.

42. Uses of the Barometer.— It has already
been stated that the atmospheric pressure is
less as the height above the earth is greater.
When we have found at what rate it dimin-
ishes, we can readily find the height of moun-
tains by means of the barometer. We have
to find the difference between the readings of
the barometer at the level of the sea and at
the top of the mountain. This shows how
much the pressure has diminished, and from
this we can find the height of the mountain.

The barometer is also of considerable use
in indicating the approach of storms, espe-
cially of violent winds. It has been observed
that such storms are very likely to occur im-
1] mediately after a sudden diminution of atmos-

Fig. 33.
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pheric pressure, which is shown by a rapid fall of the mer
cury in the barometer tube. On the other hand, a gradual
rise of the mercury in the tube usually indicates the ap-
proach of fair weather.

The mere height of the mercury in the tube tells us little
about the weather, but a careful study of the movements
of the mercury enables us to judge pretty accurately what
changes are likely to occur in the weather.

43. Pumps.— As water is somewhat more than thirteen
times lighter than mercury, the pressure of the atmosphere
will sustain a column of this liquid about thirteen times
thirty inches in height, or considerably more than thirty
feet. If the tube is open at the top it is necessary to re-
move the air from it before the water will rise into it. An
instrument for raising water in this way is called a pump.

The common /Jfting-pump is shown in Figure 34. Itis
really an air-pump, with piston and valves like those de-
scribed above (33), and it works in the very same way.
When the piston 2 is forced down, the air below it, by its
expansive force, opens the valve O, through which it es-
capes. When the piston is drawn up again, the valve O
is kept shut by the pressure of the air above, and the air
in 4 expands, pushes open the valve S, and rushes into
the vacuum above. The air being thus partly removed
from A, the pressure of the air upon the water in the well
outside is greater than that inside the pipe, and conse-
quently forces the water up the pipe and through the open
valve S. When the piston is pushed down again, the pres-
sure of the water in the cylinder shuts the valve S, and
opens the valve 0. The water thus gets above the piston,
which on going up again lifts it so that it flows out at the
spout, as shown in the figure.

Figure 35 represents the jforce-pump. In this pump the
piston 2 is solid. When it is drawn up, the water below
by its upward pressure opens the valve S and fills the
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Fig. 35.

cylinder. When the piston is pushed down, the valve .S
being shut by its own weight and the pressure of the water
upon it, the water is forced up through the valve O into
the pipe . When the piston goes up again, the valve O
is closed by its own weight and that of the water above,
the valve .S opens, and the cylinder is filled as before.

In Figure 36 we have these two pumps combined. The
air is pumped out through the valves .S and O, and the
water is forced up into the cylinder through the pipe 4
and the valve S, just as it was in the lifting.pump ; and
the water is then forced through the valve O and the pipe
D, as in the force-pump just described,
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In both these forms of force-pump the water is driven out
of the pipe D only when the piston is going down. It may
be made to flow out in a steady stream by adding an air-
chamber above the valve O, as shown in Figure 37. As

Fig. 36. Fig. 37.

the water is forced into this chamber it compresses the air,
which by its expansive force exerts a continuous pressure on
the water, and drives it in a constant stream up the pipe.

In the fire-engine, two force-pumps are usually connected
with one air-chamber. The pumps are so arranged that
the piston of one is going down while that of the other is
going up, thus forcing water into the air chamber all the
time.

44. The Siphon.— Bend a tube into the form of the let-
ter U, making one arm somewhat longer than the other ;
fill it with water, and close each end with the fingers; then
invert it and place the short end under the surface of wa-
ter in a vessel. If now both ends are opened, the water
will flow out of the vessel through the tube. A bent tube
used in this way is called-a sipkon.

To explain the action of a siphon, let us suppose it
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filled and the short arm placed in the water. The pressure
then acting on C (Figure 38), and tending to raise the wa-
ter in the tube, is the atmospheric pressure Zess the weight
of the column of water C'D. In like manner, the pressure
on the end of the tube #
is the atmospheric pressure
less the pressure of the
column of water 4 B. But
as this latter column is
longer than C D, the force
acting at 2 is less than the
force acting at C, and con.
sequently the water will be
driven through the tube by
a force equal to the differ-
ence of these two forces.
The flow will therefore be
: the faster, as the difference
of level between C and B is greater.

45. Zantalus's Cup.—This is a glass cup, with a siphon
tube passing through the bottom, as shown in Figure 39.
If water be poured into the cup, it will rise both inside and
outside the siphon until it has reached the top of the tube,
when it will begin to flow out. If the water runs into the

: cup less rapidly than the siphon
carries it out, it will sink in the
cup until the shorter arm no
longer dips into the liquid and
the flow from the siphon ceases.
The cup will then fill again as
before ; and so on.

In many places there are
springs which flow at intervals,
like the siphon in this experi-
ment, and whose action may be explained in the same

Fig. 38,
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way. A cavity under ground may be gradually filled with
water by springs, and then emptied through an opening
which forms a natural siphon. In some cases of this kind
the flow stops and begins again several times in an hour.

46. The Air-Gun and the Condenser.— We have seen
that gases exert an expansive force which increases when
they are heated (35). It increases also when they are
compressed into smaller space. This is illustrated by the
air-gun, which consists of a tube connected by a stop-cock
with a small air-tight vessel of very great strength. If a
large amount of air be forced into this vessel, and the
stop-cock be then opened, the expansive force of the con-
fined gas will drive a bullet from the tube as if it were
fired from a musket.

The firing of a musket is in fact another illustration of
the very same kind. When the gunpowder is set on fire it
forms an immense amount of gas, which, being condensed
into a small space, has a very great expansive force, and
therefore exerts a very great pressure upon the bullet.

An instrument used for compressing air in this and
other experiments is called a cndenser. Tt consists of a
strong cylinder with a piston and valves arranged precisely
as in the force-pump in Figure 35. It works too in the
same way as the force-pump ; the air rushing in through
the valve .S when the piston is raised, and being driven
out through the valve O when the piston is pushed down.
The vessel into which the air is to be forced is screwed to
the pipe D.

47. Mariottes Law.—In Figure 40 we have a long
glass tube closed at one end and bent up. into the form of
the letter & Pour in a little mercury, and tip the tube a
little, so that a part of the air may escape from the closed
end, and the mercury may stand at the same level in both
arms. The column of air in the closed arm is now evi-
dently under a pressure equal to that of the atmosphere,
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which we have seen to be equal to that of a column of
mercury 30 inches high (37). If now mercury be poured
into the long arm until its level in that arm is 3o inches
above that in the short arm, the air in this arm will be
under a pressure of two atmospheres,
or 30 pounds to the square inch. Un-
der this pressure it will be seen that
the column of air is just half as long
as it was before. If more mercury be

Fig. 40.

poured in, until its level in the long
arm is 6o inches above that in the
short arm, then the air in the short
arm will be under a pressure of three
atmospheres, or 45 pounds to the
square inch ; and it will be found to
be only one third as long as at first.
When, therefore, the pressure upon a
column of air 'is doubled, the bulk
is reduced to one half; when it is
trebled, the bulk is reduced to one
third ; and so on.

The fact that the bulk of a gas be-
comes less just in proportion as the
pressure upon it becomes greater, or,
in other words, that tke volume of a
gas is inversely as the pressure whickh it
bears, is called Mariotte's law, from its
discoverer.

In the above experiment, it is evi-
dent that when the bulk of the air has -been reduced
to one half, its expansive force, or its elasticity, has been
doubled, since it balances double the pressure in the long
arm that it did before. When its bulk is reduced to
one third, it balances thrice the pressure; and so on.
The elasticity of a gas then becomes greater just in pro-




NATURAL PHILOSOPHY. 43

portion as its bulk becomes less, or as the pressure upon
it becomes greater ; or, in other words, #e casticity of a
gas is inversely as its volume, and direclly as the pressure
which it bears.

48. 7%e Manometer.— An instrument for measuring the

expansive force, or pressure, of a gas is e
called a manometer. One form of the ma-  L=4"
nometer is shown in Figure 41. It consists
of a glass tube closed at the upper end and 0
filled with air. Its lower end is fastened i
into a small iron box containing mercury.
The tube A4 serves to connect the box with
the closed vessel holding the gas whose ex-
pansive force is to be tried. The height to
which the mercury is raised by the pressure 1
of the gas is shown by a scale.

49. The Spirit Level. —1If a tube be filled
with liquid except a mere bubble of air,
and then closed, this bubble will always
rise to the highest part of the tube, in
whatever position it may be placed. Ad- A
vantage is taken of this fact in the con-
struction of the spirit level.

The most common form of this instru-
ment (Figure 42) consists of a closed glass tube, 425,
very slightly curved on the upper side. It is filled with
spirit, with the exception of a bubble of air which tends

G o~ep

to rise to the highest part of the tube. It is placed ina
case CD, which is so arranged- that when it is placed on
a perfectly level surface the bubble of air is exactly in
the middle of the tube, as represented in the figure.
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SUMMARY.

Gases have weight. (27.)

Gases, like liquids, press upward, downward, and side
ways. (28.)

These pressures of gases are illustrated by the Zand-glass,
the Magdeburg hemispheres, and the weight-lifter. (29— 31.)

Gases are acted upon by an expansive force.  (32.)

The air can be exhausted from a vessel by means of the
air-pump. (33.)

Bodies are buoyed up in air by a force equal to the
weight of the air which they displace. (34.)

It is owing to this that éa/loons rise in the air. (35.)

The atmospheric pressure balances a column of mercury
about thirty inches high, and is equal to about jfif#een
pounds to the square inch. (37, 38.)

This pressure varies from day to day, and becomes less
as the height of the place increases. (39, 40.)

The barometer is an instrument for measuring the at-
mospheric pressure. (41.)

It is used in finding the height of mountains, and, to a
certain extent, it indicates changes of the weather. (42)

The action of pumps is to be explained by the pressure
of the atmosphere. (43.)

The siphon also acts by reason of the atmospheric
pressure. (44.)

The expansive force, or easticity, of gases is increased
by %eat and by pressure. (46.)

The bulk or volume of a gas is in the inverse ratio of
the pressure which it bears.

The elasticity of a gas is in the inverse ratio of its volume,
or the direct ratio of the pressure it bears.

These facts are known as Mariotte’s lazo. (47.)

The elasticity of gases is measured by means of the
manometer. (48.)
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PROBLEMS.
WEIGHT OF GASES.

&5 The specific gravity of a gas is its weight compared
with that of an equal bulk of atmospheric air.

37. A glass globe of the capacity of one litre weighs
83 grammes after the air has been exhausted from it ; and
84.292 grammes when full of air. What is the weight of
v litre of air?

38. The same globe, when full of ammonia gas, weighs
83.759 grammes. What is the weight of a litre of ammo-
nia gas?

39. The same flask, when full of carbonic acid,
weighs 84.964 grammes. What is the weight of a litre
of carbonic acid?

40. The same flask, full of hydrogen, weighs 83.08¢
grammes. What is the weight of a litre of hydrogen?

41. The same flask, when full of oxyyen, weighs 84.428
grammes. What is the weight of a litre of oxygen?

42. What is the specific gravity of ammonia gas? What
is the specific gravity of carbonic acid? What is the
specific gravity of hydrogen ?  What is the specific gravity
of oxygen ? y -

43. A vessel of the capacity of 985 litres would hold
how many grammes of air? Of carbonic acid?

44. A vessel of the capacity of 416 litres would hold
how many grammes of hydrogen? Of oxygen?

PRESSURE. CAUSED BY THE WEIGHT OF GASES.

&5 The atmospheric pressure is about one kilogramme
upon every square centimetre of surface at the level of
the sea.

45. The body of an ordinary-sized man has a surface
of about 16,000 square centimetres. How many kilo-
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grammes of pressure does the atmosphere exert upon a
man’s body? How many pounds avoirdupois?

46. A room is 1z metres long, 9 metres wide, and 5
metres high. How many kilogrammes of pressure does
the atmosphere exert upon the floor of the room? How
many pounds ?

47. How many kilogrammes of pressure does it exert
upon each end of the room?

48. How many on each side?

49. How many kilogrammes of air does the room contain?

so. The atmospheric pressure will balance a column of
mercury 76 centimetres high, and the specific gravity of
mercury is 13.5. It will balance a column of water how
many centimetres high? How many feet high?

51. If water is to be raised 1,200 centimetres high by
means of the lifting pump, how much of this distance
must the water be lifted ?

52. Water is to be carried over a hill 1,350 centimetres
high. Can it be done by means of the siphon? Why?

BUOYANCY OF GASES.

53. A block of wood has a bulk of goo cubic metres.
How much is it buoyed up in the air?

54. A balloon when filled with gas weighs 500 kilo-
grammes. How many litres of bulk must it have in order
that it may just float in the air?

55. A balloon has a bulk of 1,000 cubic metres, ana
weighs 25 kilogrammes. It is filled with coal gas, whose
specific gravity is .6. By how many kilogrammes of pres-
sure is it forced upward? If a car, which, with all its fix-
tures, has a bulk of 3 cubic metres and weighs 48 kilo-
grammes, be attached to the balloon, with what pressure
will the whole be forced upward ?
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IT.

MOTION.

WEe have now studied somewhat the pressures produced
by gravity and other forces acting upon the three states of
matter. We have seen that when a stone is held in the
hand it presses upon it; and it is well known that on re-
moving the hand the stone falls to the ground. We are
now to study the motions caused by gravity and other
forces.

FIRST LAW OF MOTION.

It is a well-known™ fact that a stone or other body,
when at rest, will not begin to move of itself, but only on
the application of some force. It is equally well known
that when any body, such as a ball, is in motion, it requires
some force to stop it.

so. A moving Body when left to itself will always move
in a straight Line and at the same Rate.— If a heavy weight,
such as a lead ball, be suspended from a point by means of
a string or a wire, and it be set swinging, it will swing for
a time and then come to rest. A ball thus suspended is
called a pendulum. If this pendulum be placed under the
receiver of an air pump, and the air partly exhausted, it
will swing a longer time; and the more the air is exhausted
the longer the pendulum will swing. If the pendulum be
nicely hung, so that there will be very little friction at the
point on which it turns, it will, when once set going in an
exhausted receiver, swing 24 or 30 hours. Since the length
of the time that the pendulum will swing increases as the
resistance it meets diminishes, we conclude that it would
swing forever, provided there were no resistance to its mo-
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tion. Now, mathematicians have found that they can ex-
plain this swinging of the pendulum by supposing that the
ball of the pendulum, whéh once put in motion, would
move on forever in a straight line and at the same speed,
were it not acted upon by any other force. They have
found, moreover, that this is the only way in which they
can explain the motion of the pendulum.

We conclude, then, that a moving body when left to it-
self will always move in a straight line and at the same
rate. This is usually called the first lazw of motion.

The inability of a body, whether at rest or in motion,
to change its state, is often called znertia.

51. An unbalanced Force must act upon a Body in order to
put it in Motion, or o change the Direction or the Rate of
its Motion. — A ball held in the hand remains at rest, be-
cause the downward pull of gravity upon the ball is just
balanced by the resistance offered by the hand. If the
hand is removed so that the force of gravity is unbalanced,
then the ball begins to move. If we push with the hands
against the opposite sides of a book, the book will remain
at rest as long as the push of one hand is just balanced by
that of the other. Take away one hand, so that there shall
be nothing to balance the push of the other, and the book
begins to move. So, in every case, a body begins to move
only when an unbalanced force acts upon it.

And when a body is once in motion, it changes the di-
rection and rate of its motion only when an unbalanced
force is acting upon it. When a body is once in motion it
is just as natural for it to continue to move in a straight
line, with uniform speed, as it is for it to remain at rest when
once it is at rest. It seems to us more natural for a body
to be at rest, because;, when a body-is put in motion at the
surface of the earth, it always ineets with resistance which
quickly brings it to rest again, unless the moving force
continues to act upon it.
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52, The Effect of a Force acting for a Moment only. —
When the moving force acts upon a body only an instant,
as when a ball is struck with a bat, or a bullet is fired
from a gun, it has its greatest speed at first, and its motion
is gradually wasted by the resistance it meets in passing
through the 2ir or over the earth.

53. T%e Effect of a Force acting continuously. — When,
however, a body is acted upon continuously by a force, as
in the case of a railway train or a steamboat, the motion,
slow at first, gradually increases till it reaches a certain
point, when the speed remains unchanged so long as the
moving force is unchanged. When the moving force is in-
creased the speed increases, and when it is diminished the
speed diminishes.

54. The Resistance a Moving Body meels increases as the
Square of #ts Velocity.— The steamboat in moving has to
push aside a certain amount of water in a second, and this
is the chief resistance it meets. Now, as the speed of the
boat increases, more water must be pushed aside in a sec-
ond, and each particle of water must be moved aside more
quickly. Hence, the faster it moves, the greater the resist-
ance. Suppose the speed of the boat to be doubled, twice
as many particles of water must be pushed aside in a sec-
ond, and each particle must be pushed aside in half the
time. Hence, the resistance becomes fourfold when the
velocity is doubled. The resistance, then, increases as the
square of the velocity. This explains the fact that, in or-
der to double the speed of a steamboat, the power of the
steam must be quadrupled, and in.order to treble the speed
the power must be increased ninefold. The same is true
in the case of the train of cars, or of any moving body.
When their velocity is doubled, they meet resistance at
twice as many points in a second, and the resistance at
each point must be overcome in half the time. ;

55. A moving Body may be in Equilibrium. — We have seen
3 D
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(11) that a body at rest is in equilibrium. It is so be-
cause the forces acting upon it are balanced. In the case
of a train of cars, on first starting the force of the steam
is not wholly balanced by the resistance ; hence it imparts
motion to the train. But as the speed of the train in-
creases, the resistance also increases, until it finally equals
the force of the steam. All the force of the steam is now
used in balancing the resistance, and the speed no longer
changes. Since the two forces acting upon the moving
body balance each other, it must be in equilibrium. Every
body then moving in a straight line and with uniform speed
is in equilibrium.

SECOND LAW OF MOTION.

56. A Force has the same Ejfect in producing Motion, whether
it actls upon a Body at Rest or in Motion, and whether it acts
alone or with other Forces.— In Figure 43, A B is a board ;

CD an arm moving upon it, turning on a hinge at C, and
driven by a spring Z; at the end of the arm .D is a hol-
low, with its opening in the side of the arm large enough to
contain a small ball, so that when the arm is driven by the
spring Z, the ball will be thrown horizontally ; at # is an-
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other chamber opening downwards, the lower opening being
closed by the board G, which will be knocked away by a
blow of the arm CD. If aball be put in the chamber at D,
and another in the chamber at Z the very same movement
which throws the first horizontally forward will let the sec-
ond drop at the same instant. On trying the experiment
it will be found that both balls will reach the floor exactly
together. So, too, if the machine and floor are both in-
clined at just the same angle, the balls will both reach the
floor together. _

In the case of the ball that is thrown horizontally, two
forces have acted, one to throw it forward in a straight line,
and the other to draw it to the earth in a straight line ;
and it is seen that it is drawn just as far towards the earth
in a given time as the ball that was let fall from a state of
rest.

From this and other experiments it has been found that,
when two forces acting in different directions have been
brought to bear upon a body so as to produce motion, the
body at any given time will be just as far from the place it
would have reached had only one of the forces acted upon
it, as it would have been had it been at rest at this point,
and acted upon by the other force alone for the same time.

For example, suppose the spring would send the ball for-
ward 3o feet in a second, and the force of gravity pulls it
from a state of rest 16 feet towards the earth in the same
time, the ball at the end of the second will be just 16
feet below the point it would have reached had only the
force of the spring acted upon it. So, were a ball thrown
directly upward with a velocity of 1oo feet a second, at
the end of the second it would be only 84 feet high, that
is, 16 feet below the point it would have reached had not
the force of gravity acted upon it. If it were thrown di-
rectly downward from the top of a high tower with the
same velocity, it would be at the end of a second 116



52 NATURAL PHILOSOPHY.

feet below the top of the tower, that is, 16 feet below
the point it would have reached had not gravity acted
upon it. Now 16 feet is just the distance in each of
the above cases that gravity would have pulled the ball
in a second from a state of rest.

Again, suppose that the current in a stream is strong
enough to carry a boat down stream one mile in ap
hour, and a person attempts to row the boat directly
across the stream at a rate which would take him across
in an hour, at the end of the hour the boat would be at
the opposite bank just a mile down stream.

57. A Body thrown horizontally or obliquely when acted
upon by Gravity describes a curved Path.— When both
the forces acting upon the body are instantaneous, it
moves in a straight line ; when one is instantaneous and
the other continuous, as in the case of gravity acting on
a ball thrown horizontally or obliquely, the path is curved.
The curved path described by a body when acted upon
by an instantaneous and a continuous force is well illus-
trated by a jet of water issuing from the side of a vessel.
The lateral pressure is the instantaneous force acting upon
each particle of water as it issues from the opening ; and
the force of gravity acting upon it after it leaves the open-
ing is the continuous force. The curved path in this
case is called a parabola.

On account of this effect of gravity upon a body
moving horizontally or obliquely, a cannon-ball describes
a curved path. If then a cannon or a musket is fired
at a distant object, it must be aimed above it.

We have a good illustration of the second law of mo-
tion in the case of falling bodies.
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FALLING BODIES.

58. Al DBodies would fall al the
same Rate, were it not for the Resist-
ance of the Air. — As we see bodies
light and heavy falling through the
air, we come to think that the force
of gravity causes heavy bodies to fall
more rapidly than light ones ; but if
we place a coin and a feather in a
long glass tube and exhaust the air
completely, on inverting the tube
(Figure 44) the two bodies will fall
through it in the same time. It must
be therefore the resistance of the air
which causes a lighter body to fall
more slowly through the atmosphere
than a heavy one does.

When therefore the force of gravity
is unimpeded in its action, it will
tause every body, whatever may be
its size, shape, or density, to fall with
exactly the same speed.

59. When a Body is moving di-
rectly downward Gravily increases ifs
Velocity at the Rate of 32 Feet @ Second. — It is found by
means of a pendulum that a body falls 16 feet the first
second, and acquires a velocity of 3z feet during the
time. As gravity has the same effect upon a moving
body as upon one at rest, a falling body will gain in
velocity 3z feet each second. When therefore a body
is moving directly downward, gravity increases its ve-
locity at the rate of 32 feet a second.

6o. How to find the Distance a Body jfalls in a given
Time.— As we have seen, a body when falling from a
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state of rest has a velocity of 32 feet at the end of the
first second, and falls 16 feet during that second. This
distance is exactly the mean between o, its velocity at
starting, and 32, its velocity at the end of the second.
As it would gain a velocity of 32 feet during the next
second, it would have a velocity of 64 feet at the end
of that second. The velocity it has already acquired
would cause it to fall 32 feet the second second, and
the force of gravity acting upon it during that time
would cause it to fall 16 feet more ; hence it would fall
48 feet during the second second. It will be noticed
that 48 is just the mean of 32, its velocity at the begin-
ning of the second, and 64, its velocity at the end of the
second.

During the first two seconds the body would fall 48 4-
16 = 64 feet. This is just twice the mean of o and 64.
Hence, to find the distance that any body would fall
when acted upon by gravity alone during any number
of seconds, find its mean velocity during the time, and
multiply it by the number of seconds.

To find the velocity of a falling body at the end of
any second, multiply 32 feet by the number of seconds
it has been falling.

61. When a Body is moving directly upward Gravity re-
tards its Velocity at the Rate of 32 Feet a@ Second. — We have
already seen that gravity has the same effect on a body in
motion as on one at rest. Since, then, it causes a body in
falling from a state of rest to acquire a velocity of 32 feet a
second, it must, in the case of a body moving directly up-
ward, diminish its velocity at the rate of 32 feet a second.
And it must also cause it to rise each second 16 feet less
than if it were not acting upon it.

62. How lo find the Distance a Body, when thrown up-
ward, will rise in a given Time.— To find this distance, take
the mean velocity of the body during the time, and multi-
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ply it by the number of seconds. To find the velocity at
any particular second, multiply the number of seconds the
body has been rising by 32, and subtract this from the
velocity the body has at starting.

63. A Body always acquives the same Velocity in falling
the same Distance. — It has been found that a body in roll-
ing down an inclined plame (allowance being made for fric-
tion) acquires the same velocity that it would have acquired
in falling a distance equal to the height of the inclined
plane. So, too, in the case of a pendulum-ball, if it be
drawn up to the point C (Figure 45),

Fig.
and then allowed to fall to B, it will, on A 4
reaching B, have the same velocity it /
would have had in falling from C to D. /

And it is found to be true in general, o
that bodies always acquire the same ”i
velocity in falling the same distance Di—==Qp
from a state of rest, no matter what

path they may take.

PROBLEMS.

SECOND LAW OF MOTION.

& Gravity causes a body to fall from a state of rest
4.9 metres in a second, and increases its velocity 9.8
metres in a second.

56. A body falls from a state of rest. How many
metres of velocity has it at the end of the third second?

57. A body is thrown downward with a velocity of 50
metres a second. What will be its velocity at the end of
7 seconds?

58. A body is thrown downward with a velocity of 23
metres a second. What will be its velocity at the end of
9 seconds?
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59. A body is thrown upward with a velocity of 42
metres a second. What will be its velocity at the end
of 4 seconds?

60o. A body is thrown upward with a velocity of 75
metres a second. What will be its velocity at the end
of 5 seconds?

61. A body is thrown upward with a velocity of 98
metres a second. How long will it continue to rise ?

62. How high will the above body rise ?

63. How far will it rise the first 3 seconds?

64. How far will it rise the last 3 seconds?

65. How far will it rise from the beginning of the 3d to
the end of the 8th second ?

66. Two bodies are thrown upward, one with a velocity
of 68.6 metres a second, and the other with a velocity of
137.2 metres a second. How many seconds will it be
before each begins to fall?

67. To what height would each rise ?

68. One ball is thrown upward with a velocity of 78.4
metres a second, and another with twice this velocity.
The last ball will rise how many times as high as the first?

69. If the second ball had been thrown with thrice
the velocity of the first, how many times as high would it
have risen?

70. If it had been thrown with four times the velocity,
how many times as high would it have risen ?

71. A ball falls from a state of rest, and reaches the
earth in 12 seconds. With what velocity does it strike the
earth?

72. From what height did the ball in the last example
fall ?

73. How far did it fall the first 5 seconds?

74. How far did it fall the last 5 seconds ?

75. How far did it fall from the beginning of the 3d to
the end of the 5th second?
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76. How far did it fall from the beginning of the 8th
to the end of the rith second?

77. A ball is thrown downward with a velocity of 125
metres a second, and reaches the earth at the end of 7
seconds. What is its velocity on reaching the earth?

78. From what height was the ball in the last example
thrown? i

79. Through what distance did it pass from the begin-
ning of the 3d to the end of the 6th second?

8o. A stone falls from a state of rest, and is 4 seconds
in reaching the earth. With what velocity does it strike
the earth? Through what distance does it fall?

81. If the stone had reached the earth in 8 seconds,
what velocity would it have acquired, and through what
distance would it have fallen?

82. If the stone had reached the earth at the end of 12
seconds, with what velocity would it have reached the
earth, and through what distance would it have fallen?*

83. A body in falling from a state of rest through
4.9 metres acquires a velocity of 9.8 metres a second.
Through what distance must it fall in order to double
this velocity ?

84. Through what distance must it fall in order to
treble this velocity ?

85. A stone falls from a height of 19.6 metres. With
what velocity does it reach the earth?

NotE. — We see from problems 8o —8g that t4e velocity
9f a body increases as the square root of the distance through
whick it falls from a state of rest. We see from problems
66 — 70 that the height to which a body will rise increases
as the square of the velocity with whick it starts.

* See Appendix, II.
3*
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THIRD LAW OF MOTION.

64. Momentum.—If balls of lead of different size be
placed in the cavity of the arm C D (Figure 43), and the
arm be drawn back to exactly the same point each time,
the balls will not all be thrown to the same distance. The
smaller the ball the farther it will be thrown. If one
ball is twice as heavy as another, it will be thrown only
one half as far; if three times as heavy, only one third
as far; and so on.

The same is true when the balls are of different materi-
als, provided their mass is different. By the mass of a
body we mean its quantity of matter. This is usually
measured by its weight ; that is, if a body weighs twice as
much as another, its mass is said to be double; if thrice
as much, its mass is said to be treble ; and so on.

We see then that the same force acting upon bodies con-
taining different quantities of matter does not impart to
each the same velocity ; and that the force acting upon
each being the same, the velocity will be in the inverse
ratio of the quantities of matter that they contain ; that is,
if the quantity of matter in each be multiplied by its ve-
locity, the products will all be equal.

The product of the velocity of a body multiplied by its
mass is called its momentum.

The same force, then, will impart the same momentum

Fig, 46. to a body, whether that body be large
or small.

65. 4 moving Body cannot impart
Motion to another Body without itself
losing the same Quantity of Motion. —
Hang two balls of lead or clay side by
side, as shown in Figure 46, and place
behind them an arc graduated so that

cd

@5 the line 2z & shall be four times as




NATURAL PHILOSOPHY. 59

long as 1a; 3 ¢ 9 times as long as 1 @; and 4 4, 16 times
as long as 1 a.

Now, if one of the balls be drawn back to the division
2 on the scale, and dropped, it will, as we have seen,
(note, page 57,) on reaching the other ball, acquire twice
the velocity it would have acquired had it been dropped
from division 1; and if dropped from division 3, it will
acquire three times the velocity it would have acquired
had it been dropped from 1.

If now both balls are of the same weight, and one of
them be raised to the division 2 and dropped, on striking
the other ball ‘it will move on with that ball to 1. The
momentum of the first ball is then sufficient to cause both
balls to move on to this division. Now, to cause the balls
to rise to this division, they must start with just half the
velocity that the first ball had on reaching the second ball.
The momentum of the balls after collision is then the same
as that of the moving ball before collision. The moving
ball has then imparted to the ball at rest a quantity of
motion equal to half its own, and has in turn lost half
its own motion.

Put now in the place of these balls two other balls of
unequal size, whose joint weight shall be equal to that of
the first balls, and let the weight of the smaller ball be just
one third that of the larger ball. If now this ball be raised
to 4 and dropped, it will acquire on reaching the larger ball
twice the velocity of the ball first dropped from 2 ; and as
its mass is just half the mass of that ball, its momentum
will be the same. On allowing it to fall from 4 against the
larger ball, the two will move on together to 1. But this
is just the height to which the balls moved in the first ex-
periment. The balls, then, after collision, have the same
momentum that the moving ball had before collision.
Since, after collision, the balls have one fourth the velocity
of the smaller ball before collision, the smaller ball will
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have only one fourth the motion it had before, while the
larger ball will have three times the motion of the smaller
one, or three fourths the motion the smaller one had before
collision. The smaller ball has then imparted to the larger
one a quantity of motion equal to three fourths its own,
and has in turn lost three fourths its own motion.

If two equal balls of ivory, or some other very elastic
substance, are hung side by side, and one of them is raised
and dropped against the other, on collision the first ball
comes to rest, and the second ball starts off with a velocity
equal to that which the first had acquired.

It is found to be true in every case that a moving body
cannot impart motion to another body without itself losing
the same quantity of motion. This is usually called the
law of action and reaction, and stated thus : action and reac-
tion are always equal and in opposite directions. i

This law is the result of the inability of a moving body
of itself either to increase or to lessen its quantity of motion.
On meeting another body it may impart some of its own
motion to it ; but it cannot give motion to this body, and
at the same time retain all its own motion.

66. Other Cases of Action and Reaction.— When any force
acts in opposite directions, it is usually said to @</ in one di-
rection, and 7eac in the opposite. Thus in firing a cannon,
the expansive force of the gases suddenly set free by the
burning powder acts equally in all directions. It acts
upon the sides with equal and opposite forces which neu-
tralize each other unless the cannon bursts. It also acts
toward the muzzle and breech with equal forces, which
produce equal effects, one upon the ball and the other on
the cannon, causing the recoil. The ball and the cannon
both have the same momentum, but the ball, since it has a
much less mass, gets a much greater velocity. This expan-
sive force is said to ac# upon the ball-and to 7eact upon the
gun. So, too,in walking, we are said to react upon the



NATURAL PHILOSOPHY. 61

earth, The truth is, that the bent leg acts like a bent
spring between our bodies and the earth, and when the
spring straightens it pushes us away from the earth and
the earth away from us; the earth being moved as much
less than our bodies as its mass is greater.

67. 1t requires Time to impart Motion to a Body as a
Whole. — The forces which impart motion to a body often
act directly upon only a few of its particles. When a ball
is struck by a bat, only a small part of it receives the blow,
and when a bullet is shot from a gun, the gases (46) act
only upon one half of it. When a body is thus set in mo-
tion by a force acting upon only a few of its particles, it is
clear that the motion must be transmitted from particle to
patticle. Now, this transmission of motion from particle
to particle requires time, although this time may be exceed-
ingly short. If the force acts so suddenly that there is not
time enough for this transmission, the part acted upon is
flattened or chipped off. Thus a musket ball may be fired
through a window pane, making a clear round hole without
cracking the glass. If the ball had been thrown by the
hand, the whole pane would have been shattered. In the
first case the speed of the ball was so great that the par-
ticles in front of it had not time to transmit their motion
to those about them ; hence they moved on alone, leaving
the others at rest. If the pane had been suspended by a
fine thread, the ball would have passed through it in the
same way, without breaking the thread, or causing the
pane to swing in the least. So a door half open may be
pierced by a cannon-ball without being shut. The end of
a musket in a soldier’s hand has been known to be carried
away by a cannon-ball without his being aware of it. It is
a well-known fact that a tallow-candle may be fired through
a board, since it gets through it before the parts of the tai-
low have time to yield. In this way a soft missile may hit
as hard as lead if fired with sufficient speed.
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We see, then, that when a moving body meets with an-
other it seldom expends all its power in imparting motion
to that body as a whole, but also pierces it more or less.
The power of a body to pierce another increases as the
square root of its velocity ; that is, if a body 1s to pierce
another twice as far, it must have four times the velocity ;
if three times as far, nine times the velocity ; and so on.
68. Reflected Motion. — When an elastic ball is thrown
against the floor it rebounds. If it is thrown directly
downward, it retraces its path in its rebound. If it is
thrown obliquely, it rebounds obliquely in an opposite
direction. In Figure 47, if the ball is thrown in the direc-
Fig. 47. tion a /, it will rebound in the di-
rection f 4. If the line ¢ f be
drawn at right angles to the sur-
face, the angle formed by the two
2 lines af and e¢f is called the

angle of incidence, and is always
equal to the angle formed by the two lines & f/ and e f.
This last angle is called the angle of reffection. In reflected
motion the angle of incidence always equals the angle of re-
Slection.

c

SUMMARY.

A moving body, when left to itself, will always move in a
straight line and at the same rate. (50.)

An wunbalanced force must act upon a body in order to
put it in motion, or to change the direction or rate of its
motion. (51.)

When a force acts upon a body for a moment only, the
motion which it gives it is gradually wasted away, owing
to the resistance which the body meets. (52.)

The resistance which a moving body meets increases as
the square of the velocity of its motion. (54.)
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A body moving 1n a straight line and with uniform ve-
locity is in eguilibrium. (55.)

An unbalanced jforce has the same effect, whether it act
upon a body at rest or in motion, and whether it act alone or
with other forces. (56.)

A body thrown horizontally or obliquely, when acted
upon by gravity, is made to move in a curved path. (57.)

Were it not for the air, a light body would fall as fast as
a heavy one. (58.)

Gravity acting alone causes a body to fall from a state
of rest about 16 feet in a second.

When a body is moving directly downward gravity in-
-creases its velocity at the rate of 32 feet a second. (59.)

When a body is moving directly upward gravity retards
its velocity at the rate of 32 feet a second. (61.)

The velocity of a body increases as the square root of
the space through which it falls.

The height to which a body will rise increases as the
square of the velocity with which it starts. (MVoze, page 57.)

A body always gains the same velocity in falling from
the same height, whether it falls directly downward or
obliquely. (63.)

The same force always gives to a body the same quan-
tity of motion.

The quantity of a body’s motion is found by multiplying
its weight by its velocity. (64.)

A moving body cannot impart motion to another body with-
out itself losing the same quantity of motion. (65.)

When the same force acts in opposite directions, it is
usually said to a¢/ in one direction and to react in the op-
posite. (66.)

It requires time to give motion to a body as a whole.
(67.)

In reflected motion the angle of incidence equals the
angle of reflection. (68.)
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PROBLEMS.

THIRD LAW OF MOTION,

&% To find the momentum of a body, multiply its
weight in grammes by its velocity in metres.

86. A body weighs 5o kilogrammes and is moving at .
the rate of 12 metres a second. What is its momentum ?

84. The same body is moving at the rate of 5 metres a
second. What is its momentum?

88. With what velocity must a body weighing 6 grammes
move, in order to have the same momentum as a body
weighing 5oo kilogrammes and moving at the rate of 2
metres a second ?

89. A certain force gives to a body weighing 45 kilo-
grammes a velocity of 9 metres a second. What ve-
locity would the same force give to a body weighing 3
grammes ?

90. A body weighing 5 kilogrammes and moving at the
rate of 175 metres a second meets a body at rest weighing
85 kilogrammes, and after meeting they both move on to-
gether. What is their velocity ?

91. What is the momentum of the larger body?

92. What is the momentum of the smaller body, and
how much momentum has it lost?

93. If the larger body had weighed 20 kilogrammes,
what would have been their velocity after meeting, and
how much momentum would the smaller body have lost?

94. If the second body had weighed 3 grammes, what
would have been the velocity of the bodies after meeting,
and how much momentum would the first body have lost?
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THE PENDULUM.

75. A pendulum is a heavy body hung from a fixed point
by means of a cord or rod. When the centre of gravity of
the body is directly under the point of support, the body
remains at rest; but if the body be drawn out of this posi-
tion, it will on being let go fall towards a vertical line pass-
ing through the point of support, and when it has reached
this line it will, owing to its inertia, pass beyond it. On
coming to rest it again falls toward this vertical line and
again passes beyond, and thus continues to swing from
side to side. '

There are two kinds of pendulum, the simple pendulum
and the compound pendulum.

76. The Simple Pendulum. — A simple pendulum consists
of a material point, suspended to a fixed point by means
of a thread without weight, perfectly flexible, and incapable
of stretching. Such a pendulum has of course no real
existence ; but we can approach suffi-
ciently near to it, for purposes of illus-
tration, by suspending a small lead
bullet to a fixed point by means of a
fine silk thread.

77. First Latwo of the Vibration of the
Pendulum. — Suppose 4, in Figure 48,
to be a leaden ball hanging by a fine
silk thread. Pull it to one side so that
it shall swing through an arc of some
3°% and count the number of its vibra-
tions in a minute. Now bring it to rest
again, and draw it to one side so that
it shall swing through an arc of 2°, and
again count its vibrations in a minute.
Again bring the ball to rest, then cause

Fig. 48.
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it to swing through an arc of 1° and count the vibrations
in a minute. In all three cases the number of vibrations
in a minute will be equal.

By a wibration is meant the whole of the pendulum’s
movement in one direction. The arc through which the
pendulum swings is called the emplitude of its vibration.

The above experiment shows that, when the length of the
pendulum remains the same, and the amplitude of the vibra-
sion does not exceed 3°, the pendulum always vibrates in the
same time, whalever be the amplitude of the vibration.

This singular property of the pendulum is called Zsock-
ronism, from two Greek words signifying egual times, and
the vibrations of the pendulum are said to be zsockronous.

78. The Second Law of the Vibration of the Pendulum. —
Let # and ¢ in figure 48 be two pendulums exactly alike,
except that the ball of one is lead, and of the other ivory.
Let each swing through a small arc, and count its vibrations
in a minute. It will be found that, making allowance for
the resistance of the air, each performs the same number
of vibrations in the same time. This gives the second law
of the vibration of the pendulum, namely: for pendulums
of the same length, the time of the vibration is the same, what-
ever the pendulum may be made of.

79. Third Law of the Vibration of the Pendulum. — Let
4 in Figure 48 be a pendulum oue fourth the length of ¢
and a another, one ninth the length of ¢. Set each swing-
ing through a small arc, and count the vibrations of each
in a minute. It will be found that & vibrates twice as fast
as ¢, and @ three times as fast as . This shows that, for
pendulums of unequal length, the time of the vibration is pro-
portional to the square root of the length, that is, the lengths
of the pendulum being made 4, 9, and 16 times greater,
the time of the vibration of the pendulum will be only 2, 3,
and 4 times longer. This is the third law of the vibration

“of the pendulum.
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8o. Fourth Law of the Vibration of the Pendulum. — It
is found that when a pendulum of a given length is placed
on different parts of the earth’s surface, the time of the
vibrations is not always the same. Towards the poles it is
found to vibrate more rapidly than at the equator. Mathe-
maticians have shown that this is because the force of
gravity is stronger at the poles. They have shown that,
in different parts of the earth, the time of the vibration for
pendulums of the same length is in the inverse ratio of the
square root of the intensity of gravity. That is, if the inten-
sity of gravity were four times as great in one place as in
another, the time of the vibration of a pendulum of the
same length would be half as great, and so on.

81. The Compound Pendulum.— The simple pendulum,
as has been stated, can have no real existence. Every
pendulum actually used is a compound pendulum, consist-
ing of a heavy weight hung from a fixed point by means of
a rod of wood or metal. The particles of such a pendulum
must of course be at different distances from the point of
suspension, and must therefore tend to vibrate in different
times. Hence the time of vibration of the whole pendulum
will not be the same as that of a simple pendulum of the
same length.

The compound pendulum may be regarded as consisting
of as many simple pendulums as it contains particles. If
these were free to move, they would vibrate in times de-
pending upon their distances from the point of suspension;
but since they are united in one body, they are all com.
pelled to vibrate in the same time. Consequently, the
vibrations of the particles near the point of suspension are
retarded by the slower vibrations of the particles below
them ; and, on the other hand, the vibrations of the par-
ticles near the lower end of the pendulum are quickened
by the more rapid vibrations of those above them. At
some point between these there must be a particle whose
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vibration is neither retarded nor quickened, —all the par-
ticles above having just the same tendency to vibrate faster
that those below have to vibrate slower. This point is
called the centre of vibration, and it is obvious that the time
of vibration of a compound pendulum is the same as that
of a simple pendulum whose length is equal to the dis-
tance of the centre of vibration from the point of sus-
pension. This distance is the wvirtual Jength of the pen-
dulum.

When the form of the pendulum is given, the position
of the centre of vibration can be found experimentally by
making use of a -remarkable property of the compound
pendulum, namely, that if such a pendulum be inverted
and suspended by its centre of vibration, its former point
of suspension will become its new centre of vibration, and
the time of vibration will be the:same as before. This
property is usually expressed by saying that e centres of
vibration and suspension are interchangeable.

To find the centre of vibration, then, we have only to
reverse a pendulum, and by trial find the point at which it
must be suspended in order to vibrate in the same time as
it did before it was reversed. A pendulum constructed for
this purpose is called a reversible pendulum.

82. The Use of the Pendulum jfor Measuring Time. —
The most important use of the pendulum is for measuring
time. The common cock is merely a contrivance for re-
cording the beats of the pendulum, and keeping up its
motion. The essential parts of such a clock are shown in
Figure 49. The toothed wheel R, called the scape-wheel,
is turned by a weight or spring, and its motion is regulated
by the escapement n m, which swings on the axis o, the
vibrations of the pendulum being communicated to it by
means of the forked arm 2 4. When the pendulum is at
rest, one of the teeth of the scape-wheel rests upon the
upper side of the hook 2, and the clock does not go. If
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now the pendulum be set in motion,

so that the hook 7 is moved from the

wheel, the tooth which rested on it is

set free, and the wheel begins to turn;

but it is soon stopped by the hook 7,

which moves up to the wheel as

moves away from it, and catches on its

under side the tooth next below. As

the pendulum swings back, the hook #

moves away, the wheel again begins to

turn, but is stopped again on the oppo-

site side by the hook #, which catches

the tooth next to the one it held be-

fore; and thus each vibration of the

pendulum allows the scape-wheel to

move forward through a space equal

to one half of one of its teeth. If .
then the wheel has thirty teeth, it

will turn around once in sixty®beats

of the pendulum. Upon the axis of
this wheel the second-hand of the

clock is placed. It is connected by

cogs with another wheel, which takes sixty times as long
to revolve, and which carries the minute hand ; and this
latter wheel is connected with another, which turns in
twelve times the period, and carries the hour-hand. Thus
the second-hand registers the beats of the pendulum up
to sixty, or one minute; the minute-hand registers the
revolutions of the second-hand up to sixty, or one hour;
and the hour-hand registers the revolutions of the minute-
hand up to twelve, or half a day.

Were it not for the pendulum and escapement, these
wheels would be whirled round very fast by the action
of the weight or spring, and the clock would soon ruz
down. On the other hand, were there not some means
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of keeping up the motion of the pendulum, it would
soon be brought to rest by the resistance of the air
and the friction at the point of suspension. Its motion
is kept up by means of the escapement, which is so con-
structed as to give it a slight push at each vibration.
The ends of the two hooks have inclined surfaces against
which each tooth of the wheel, as it leaves them, presses
with considerable force, so as to throw the escapement for-
ward a little the moment the tooth is set free. The impulse
thus given is communicated, through the axis ¢, and the
arm a 4, to the pendulum.

83. The Use of the Pendulum for measuring the Force of
Gravity.— We have seen that the rate of the vibration of
pendulums of the same length depends on the force of
gravity. If we represent by g the velocity that a body fall-
ing from a state of rest would acquire during a second, and
by / the length of a pendulum beating seconds, then g will
be equal to the length of the pendulum multiplied by the
square of the number 3.1416. To find g, we have only to
measure the length of a pendulum beating seconds, and
then to multiply this length by the square of the number
3.1416.

Now it has been found that a pendulum beating seconds
at London must be 39.13929 inches long. From this we
get g=386 inches. One half of 386 inches is 193 inches,
or 16 feet, 1 inch. This is the distance which a body will
fall from a state of rest in a second.

SUMMARY.

A pendulum is a heavy body hung from a fixed point by
means of a cord or rod. (75.)

The laws of the vibration of the pendulum are best in-
vestigated by means of a simple pendulum. (76.)

These laws are four in number.
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1st. When the length of the pendulum remains the same,
and the amplitude of the yibrations does not exceed 3°, the
pendulum always vibrates in the same time. (77.)

2d. For pendulums of the same lengih, the time of the
vibrations is the same, whatever the pendulum may be
made of. (78.)

3d. For pendulums of different lengths, at the same place,
the time of the vibrations is proportional i the square root of
the lengths.  (79.)

ath, In different parts of the earth, the time of the vibrations
Jor pendulums of the same length, is in the inverse ratio of
the square root of the intensity of gravity. (8o.)

The pendulum in ordinary use is a compound penduium.
(81.)

The pendulum is used for measuring time. (82.)

It is also used for measuring the force of gravity. (83.)

PROBLEMS.

95. If a pendulum beating seconds at Paris is .99394 of
a metre long, what would be the length of one beating
half-seconds ? Of one vibrating in two seconds ?

96. If a pendulum at Paris one metre long vibrates in
1.00304 seconds, what will be the time of vibration for a
pendulum ¢ metres long? What for one 25 metres long?
What for one § of a metre long? What for one 2} metres
long?

'
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61
MACHINES AND SOURCES OF MECHANICAL
POWER.

THE LEVER.

84. When a workman wishes to raise a large stone, he
places an iron bar under it, as in Figure 50, with a block
under the bar near the stone, and
then presses down upon the other Fig. 0.
end of the bar; or else he places the
end of the bar under the stone, as in _— /
Figure 51, so that one end of it rests
upon the ground, and then lifts
upon the other end. The iron bar thus used constitutes
one of the simple machines. 1t is called the Jewer. The
stone to be raised is called the weighs. The moving force
applied at the other end of the bar is called the power;

Fig. st and the point on which the bar rests
P is called the jfulerum. The parts
- between the fulcrum and the points
where the power and weight act are
the arms of the lever. In the first
case, the fulcrum was between the weight and the power ;
in the second case, the weight was between the fulcrum and
the power. In the fishing rod (Figure 52) one hand is the
fulcrum, the other hand, 7, is the Fig. s2.
power, and the fish is the weight. ¢ 1
Here the power is applied between
the fulcrum and the weight.

85. Zhree kinds of Lever. — We see from the above that
there are three kinds of lever : —

(1.) That with the fulcrum between the weight and
power.

c F
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(2.) That with the weight between the fulcrum and
power.

(3.) That with the 2D between the fulcrum and the
weight.

These three kinds of lever are shown in Figure 53.

Fig. 53.

bl
A

X
O—=

P L
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B |

86. The Law of the Lever.—In the lever of the first
kind, if the fulcrum is just half way between the weight
and power, then on moving the lever a little the weight
and power will move through equal distances. In this case
it is found that the weight and power must be equal in
order to balance each other, or to be in equilibrium. If
the power were twice as far from the fulcrum as the weight,
then the weight would move through only half the distance
that the power does, and in this case the power need be
only half the weight in order to balance it.

Thus we see that, in the case of the lever, the weight
and power will balance each other when the power, multi-
plied by the distance through which it moves, equals the
weight multiplied by the distance through which it moves.
That is, if the fulcrum of a lever were so placed that one
end of the lever would move through a thousand inches
while the other end moved through one inch, then a power
of one pound on the former would balance a weight of one

thousand pounds on the latter. e
. LA
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8. The Law of Machines in General.—The same is
found to be true in the case of every machine, however
complicated ; namely, that the power and weight will
balance each other when, on setting the machine in mo-
tion, the power multiplied by the distance through which
it moves equals the weight multiplied by the distance
through which it moves.

There is no real gain of mechanical force in a lever or a
machire of any kind. A machine is only an arrangement
by which a small force acting through a great distance is
converted into a great force acting through a small dis-
tance, or else a great force acting through a small distance
is converted into a small force acting through a great
distance.

When a small force, by acting through a great distance,
is made to raise a great weight, or do a great deal of work,
there is said to be a gain of power in the machine. When
on the contrary a great force, in moving through a small
distance, lifts only a small weight, or does very little work,
there is said to be a loss of power in the machine. But
whenever there is a gain in power there is a corresponding
loss in speed, and whenever there is a loss in power there
is a corresponding gain in speed. For if in the machine
a power of one pound is made to move a weight of ten
pounds, then the weight moves only one tenth as fast as
the power. But when a power of ten pounds is made to
move a weight of one pound, then the weight moves ten
times as fast as the power.

88. Gain and Loss of Power in the Lever.—— In a lever
of the first kind, when the fulcrum is just half way between
the weight and power, there is neither gain nor loss in
power. If the fulcrum is nearer the weight than the power,
then there will be a gain in power and a loss in speed. If
the fulcrum is nearer the power than the weight, there is
loss in powegnd gain in speed.
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In a lever of the second kind, the power is always far-
ther from the fulcrum than the weight, and consequently
it always moves through greater distance. Hence in this
kind of lever there is always a gain in power and a loss
in speed.

In a lever of the third kind, the weight is always farther
from the fulcrum than the power, and consequently the
weight always moves through the greater distance. There
is therefore in this kind of lever always a loss in power
and a gain in speed.

89. The Compound Lever.— Sometimes two or more sim-
ple levers are combined, as shown in Figure 54. Suppose
that 2 be five times as far from the fulcrum f as 4 is, the
point 7 will then move five times as fast as the point 4,
and a pull of one pound on .2 will exert a pull of five
pounds on 4. If B is five
times as far from the ful-
crum £ as W is, the five
pounds of pull on B will
exert twenty-five pounds of
pull at /7. 1In this case,
one pound of pull exerted
at 2 will balance twenty-
five pounds at /7. But it would be found on trial that on
pulling 2 down one inch, /¥ would be raised only one
twenty-fifth of an inch.

Such a combination of levers is called a compound lever.

9o. Bent Levers.— Sometimes the arms of the lever are
bent, as shown in Figure 55. In such a lever the lengths
of the arms are straight lines drawn
from the fulcrum at right angles to ’
the lines#whi¢h show the direction
in which the power and weight act.

The common claw-hammer, as used for drawing nails,
is an illustration of this kind of lever.

Fig. ss.

a
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THE WHEEL AND AXLE.

91. When a weight is raised by means of the lever, it
can be raised but a short distance at a time. After rais-
ing the weight a little way it must be propped up, and
the lever must be readjusted. On this account the lever
cannot be conveniently used when a weight is to be raised
a considerable distance.

92. The Rack and Pinion.—In Figure 56 we have a
machine called the rack and pinion.
It consists of the crank A, which can
be made to turn a small toothed wheel
called the pinion. On turning the
pinion, its teeth one after another
catch under the teeth of an upright
bar B, and each tooth raises the bar a
little. This upright bar is called the
rack. On turning the crank, then, the
rack rises without interruption ; and if the rack is placed
under the weight, it will carry up the weight as it rises.
As the weight can thus be raised the length of the rack
without interruption, the rack and pinion is much more
convenient than the simple lever, when the weight is to
be raised a considerable distance.

93. The Rack and Pinion is a Modification of the Lever,
in whick the Pinion takes the Place of the short Arm. —
In the rack and pinion, the crank takes the place of the
long arm of the lever; the rod or ax/e upon which the
pinion turns takes the place of the fwlerum; and the
pinion takes the place of the skor? arm. FEach tooth
of the pinion is in fact the short arm of a lever of which
the crank is the long arm, and the pinion&' a contriv-
ance by which the lever is furnished with several short
arms instead of one. The advantage of multiplying the
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short arm in this way is this: when a short arm has
raised the weight as far as it can, it is not necessary to
prop up the weight and readjust the lever, for the next
short arm then comes in play and raises the weight far-
ther, and so on.

04. The Windlass. — Another way to multiply the short
arms of a lever would be to fill up the space between
the teeth of the pinion so that it may become a darre
and then fasten the weight to one end of a rope, the
other end of which is fastened to this barrel. On turn-
ing the crank the rope would be wound upon the barrel
and the weight raised. The machine just described is
called the windlass, and is shown in Figure 357.

Fig. 57. In the windlass, the length of
the short arm is the distance
from the circumference, or out-
side, of the barrel to its centre.
This distance is called the ra-
dius of the barrel, and in the
barrel there are as many short
arms as there are radii. The length of the long arm of
the lever is the length of the crank. If the crank were
ten times as long as the radius of the barrel, a power
of one pound at the end of the crank would exert a
force of ten pounds at the circumference of the barrel.
On turning the crank round once, it is evident that
the end of the crank would move through a path like
that shown by the dotted line in Figure 56, and that this
path would be ten times as long as the circumference
of the barrel. On turning the crank once round, the
. rope would be wound round the barrel once, and the
weight would be raised a distance equal to the circum-
ference of the barrel. In this case, then, the power
would move through ten times the distance the weight
moves through in the same time, and, according to the
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law of machines (87), a power of one pound at the end
of the crank ought to balance ten pounds of weight at
the circumference of the barrel.

95. The Capstan.— In the windlass, the longer the
crank and the smaller the barrel, the greater the gain of
power. If, however, the barrel is made too small, it is
not strong enough to support the weight; while if the
crank is made too long, it cannot be conveniently turned
with the hand. But the crank, or long arm of the lever,
may be multiplied in the same way as the short arm
was multiplied in the case of the pinion and the barrel.
Thus in the windlass, just described, instead of one crank
there may be a number of spokes, and a man by standing
at one side may pull upon one spoke after another as they
come within his reach, and thus turn the barrel, though he
could not reach far enough to turn round a single spoke, if
it were arranged like a crank. If the barrel were placed
upright, a man or .several men might walk round it, push-
ing against the spokes. A windlass arranged in this way
is called a capstan, and is much used on board ships.

96. The Wheel and Axle.— If the
spokes are connected so as to form
a wheel, as shown in Figure 58, the
barrel is called the ax/, and the ma-
chine is called the w/keel and axle.

In the wheel and axle, the radius
of the wheel is the long arm of a
lever, and the radius of the axle is
the short arm. Therefore, the larger the wheel and the
smaller the axle, the greater the weight which a power of
one pound applied to the circumference of the wheel will
balance on the axle.

Power may be applied to the wheel, either by means
of pegs projecting from its rim, as in Figure 58, or by
a rope or band passing around it, as in Figure sg.
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The law of machines (87) may be readily illustrated by
means of the wheel and axle. Suppose that a rope passes
over the wheel and another over the axle, and that the
radius of the wheel is eight times as long as that of the
axle. On hanging a weight of one pound to the rope
from the wheel, it will be found that a weight of eight
pounds must be hung to the rope from the axle in order
to balance it; and it will be found, on turning the wheel,
that the weight hung from the wheel moves through eight
inches, while that hung from the axle moves through
one.

97. The Ratchet. — The raichet is an arrangement to
keep the wheel from turning except in one direction. It
consists of a catch ¢ (Figure 59), which plays into the teeth
of the wheel 4 B. It thus allows the
wheel to turn to the left, but keeps the
weight from pulling it back towards
the right. ]

98. Wheel-work. — In the wheel and
axle, the larger the wheel and the
smaller the axle, the greater the gain
of power. But, as has already been
said (95), if the barrel is made very
small, it may not be strong enough ; and on the other hand,
if the wheel is made very large, it will be too heavy and
take up too much room. Instead of using such a large
wheel, we may have several wheels and axles acting upon
one another, like the levers in the compound lever (89).
Such a combination, or #7ain, of wheels and axles is often
called wheel-work. The power is applied to the circum-
ference of the first wheel, the axle of which acts upon the
circumference of the second wheel, which in turn, by
means of its axle, acts upon the circumference of the third
wheel, and so on ; the weight being hung to the axle of the
last wheel.

Fig. s59.
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99. Cog Wheels. — There are various ways in which the
axle of one wheel is made to act on the circumference of
another.  Sometimes the one turns the other by rubbing
against it, or by friction. The most common way, however,
is by means of #ee/ or cogs raised on the surfaces of the
wheels and axles. The cogs on the wheel are usually
called seeti, while those on the axle are called Jeaves, and
the part of the axle from which they project is called the
pindon, as in the rack and pinion already described (92).

A train of wheels thus arranged is shown in Figure 6o.

Fig. 6o.

100. The gain of power by Wheel-work.—In the train of
wheels in Figure 6o, if the circumference of the wheel @ is
36 inches, and that of the pinion & is g inches, or one fourth
as great, a power of one pound at 7 will exert a force of
four pounds on 4. If the circumference of the wheel ¢ be
30 inches, and that of the pinion C 10 inches, the four
pounds acting on the former will exert a force of twelve
pounds on the latter. If the circumference of the wheel /
be 40 inches, and that of the axle 4 8 inches, the twelve
pounds acting on f will exert a force of sixty pounds on
@. One pound at 2 will then balance sixty pounds at 7.

4* F
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But in this case, as in that of the windlass (94), it will
be seen that what is gained in power is lost in speed ; since
the one pound at 2 must move through sixty inches in or-
der to raise the sixty pounds at # one inch.

Cog-wheels which have their teeth arranged as in Figure
6o are called spur-wheels. 1f the teeth project from the
side of the wheel, as in Figure 61,
it is called a crown-whed. If their
edges are sloped, as in Figure 6z,
the wheel is called a bdevel- wheel.
Bevel - wheels may be inclined to
each other at any angle. In all
cases the lines which mark the slope
of the teeth of the two wheels will
meet at the same point, as in Figure 62.

101. Belted Wheels. — Another way in which the wheels
and axles may be made to act upon one another is by
means of a &¢f, or band, passing over them both. They

Fig. 61.

Fig. 62.

Bl
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may thus be at any distance apart, and may turn either the
same way or contrary ways, according as the belt does or
does not cross between them. A cog-wheel and its pinion
must, of course, always turn in contrary directions.
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THE PULLEY.

roz. In Figure 63 /A is a fixed ring. Through this a
cord passes, to which the weight /# is hung. By pulling
down the cord at 7, the weight is drawn #p. It is often de-
sirable thus to ckange the direction of the power.

If we use a ring for this purpose, much of the
power will be wasted by the fréction, or rubbing,
of the rope against the ring. We may get rid
of a good deal of this friction by using, instead
of the ring, a wheel with a groove around it for P
keeping the cord in place. Such a wheel is w
called a pulley. X

There would be no gain in power by the use of the pul-
ley. It is evident that one pound on one side of the
wheel would balance just one pound on the other side;
and that if the former were drawn down one inch, the
latter would be drawn up just one inch.

103. Fixed and Movable Pulleys. — In Figure 64, the
frame of the pulley D C is fastened to the ceiling; the
frame of the pulley 4 B rises as the rope 2
is drawn down. A pulley like D C is called
a fixed pulley; one like 4B, a movable
pulley. The frame of the pulley is often
called the dlock.

104. The Law of the Pulley.— In the com-
bination, or system, of pulleys in Figure 64,
it is evident that the rope must have the
same Zension, that is, must have the same
strain upon it, from one end to the other. This fact,
namely, that @ cord when stretched must have the same
strain upon it throughout its length, is called the low of
the pulley.

105. Systems of Pulleys with one Rope. — In Figure 64.

Fig. 63.

1

Fig. 64.
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the tension or strain of the rope is equal to the power 7,
since it balances the power. If a weight of one pound is
hung to the rope at 7, there will be a strain of one pound
on the part of the rope on that side of the pulley. There
must then be a strain of one pound upon the part of the
rope between A4 and D, and a strain of one pound between
B and A. These two tensions, 4 D and B H, will evi-
dently sustain a weight of two pounds at /7. In this sys-
tem of pulleys, then, a power of one pound balances a
weight of two pounds.

But in this case, as in every other of the kind, what is
gained in power is lost in speed. If the power 2 is drawn
down one foot, the weight 77 will rise only half a foot ;
for of the one foot added to the length of C /2, one half
will be taken from 4 D and one half from B 4.

In the system of pulleys shown in Figure 65, we see that
one pound at £ will balance three pounds at 7, since each

Fig. 65.

of the three parts of the rope on that side of the pulley C
has a tension of one pound. But 2 must be drawn down
three feet in order to raise /7 one foot.

In Figure 66, we have a system of pulleys in which the
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weight is four times the power ; and in this case the power
evidently moves four times as far as the weight.

106. Systems of Pulleys with more than one Rope. — Figure
67 represents a system of pulleys, in which two ropes are
used. Here a weight of four pounds is balanced by a
power of one pound. The parts of the rope 4 D and 4 B
must each have a tension equal to the power. The rope
A C B balances the two tensions, B 2 and B A4, and must
therefore have a tension of twice the power. The three

Fig. 67. Fig. 68

8 42] 2
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tensions supporting the pulley 4 amount therefore to tour
times the power.

In the system shown in Figure 68, four ropes are used.
The tensions of the several ropes will be readily under-
stood from the numbers. It will be seen that in this case
the power is doubled by each movable pulley which is
added ; but, as in all the systems we have examined, what
is gained in power is lost in speed.

THE INCLINED PLANE.

107. When a heavy cask is to be raised into a cart or
dray, a ladder is often used. One end of the ladder is
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placed upon the cart behind and the other end upon the
ground, and the cask is rolled up the inclined surface
thus formed. In this way one man is able to raise a-
load of several hundred weight with comparative ease.
An inclined surface used in this way is called an iz-
clined plane.

We have examples of the inclined plane on a large

scale in roads.
108. The Law of the In-

clined Plane the same as that
of other Machines.— In Fig-
ure 69 we have an inclined
plane. I is the weight,
which is balanced by the
power P. B C is the
fkeight of the inclined plane, and 4 C is its length. It is
evident that the power must descend a distance equal to
the length of the inclined plane, in order to raise the
weight a distance equal to its height. Now it is found
on trial that, if the length of the inclined plane is six-
teen feet, and its height four feet, a power of one pound
will balance four pounds of weight. But one multiplied
by sixteen equals four multiplied by four. That is, the
power multiplied by the distance through which it acts
equals the weight multiplied by the distance through
which it is raised. It follows from the above, that the
greater the length of the inclined plane, compared with
its height, the less the force necessary to raise a weight,
and the slower the weight rises.

Fig. 69.

THE WEDGE.

109. Instead of lifting a weight by moving it along an
inclined plane, we may do the same thing by pushing
the inclined plane under the weight. When used in
this way the inclined plane is called the wedge. A
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wedge which is used for splitting wood has
usually the form of a double inclined plane,
as in Figure 70. The law of the wedge is
the same as that of the inclined plane, but
since a wedge is usually driven by a blow in-
stead of a force acting continuously, it is diffi-
cult to illustrate this law by experiments.

110, Uses of the Wedge.— The wedge is
especially useful when a large weight is to be
raised though a very short distance. Thus a tall chim-
ney, the foundation of which has settled on one side, has
been made upright again by driving wedges under that
side. So, too, ships are often raised in docks by driving
wedges under their keels. Cutting and piercing instru-
ments, such as razors, knives, chisels, awls, pins, needles,
and the like, are different forms of wedges.

THE SCREW.

111. In Figure 71 we have a machine called the serew.
It is a movable inclined plane, in which the inclined
surface winds round a cylinder. The cylinder is the dody
of the screw, and the inclined surface is its #i7ead.

The screw usually turns in a
block 4V, called the nxf. Within
the nut there are threads exactly
corresponding to those on the
screw. The threads of the screw
move in the spaces between those
of the nut.

The power is usually applied to
the screw by means of a lever 2.
Sometimes the screw is fixed and
the nut is movable, and sometimes
the nut is fixed and the screw
movable.
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112. Hunter's Screw.—1In Figure 71, if we turn the lever
2 round once, the weight /#7 will be raised a distance
equal to the space between two threads of the screw.
Were the lever of such a length that its end would de-
scribe a path 10 feet long, and were the distance between
two threads of the screw } of an inch, and were there no
friction in the nut, a power of one pound applied to the
end of the lever would exert a force of 480 pounds upon
the weight. It will be seen from this that the mechanical
advantage of the screw may be increased by increasing
the length of the lever by which it is turned, or by bring-
ing the threads closer together. But, if the threads are
brought too near together, they become too weak ; while,
on the other hand, the machine becomes unwieldy if
the lever is made too long. These objections have been
obviated in the diferential screw, contrived by Hunter,
and shown in Figure 72. AV is the
nut in which the screw A plays. We
will suppose that the threads of this
screw are % of an inch apart. This
screw A is a hollow nut, which re-
ceives the smaller screw 5, the threads
of which we will suppose to be & of
an inch apart. This small screw is
free to move upward and downward,
but is kept from turning round by
means of the frame-work. If by
means of the handle the larger screw
be turned round ten times, and the smaller screw be al-
lowed to turn round with it, the point ## will rise an
inch. If we then turn the smaller screw ten times
backward, the point /# will move down }¢ of an inch.
The effect of both these motions will be to raise the
point W % of an inch. But if the smaller screw has
been turned upward ten times and then downward ten

Fig. 72.
W
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times, the effect is the same as if it had been kept from
turning. Hence on turning the lever round ten times,
the point /77 will be raised ¢ of an inch, or the Zzfer-
ence of the distances between the threads in the two
screws, while the point Z has been raised an inch. Ac-
cording to the law of machines, then, the pressure at 77
is eleven times as great as at Z.
113. Zhe Endless Screw. — In Figure Fig. 73

73, the thread of the screw works be- )/
tween the teeth of the wheel. Hence
on turning the screw the wheel must
turn. Since as fast as the teeth at the
left escape from the screw those on the
right come up to it, the screw is acting
upon the wheel continually. Hence this machine is called
the endless screw.

SUMMARY.

A machine is a contrivance by which force is made to do
work. (84.)

In a machine there is no real gain of force, but a force
may be changed in direction, and a small force acting
through a great distance may be converted into a large
force acting through a small distance, or a large force acting
through a small distance may be converted into a small
force acting through a great distance. (87.)

The first simple machine is the Zoer. (84.)

There are #iree kinds of levers, depending upon the rel-
ative position of the weight, the fulerum, and the power.
(85.)

In a lever of any kind the weight and power will
balance each other when the weight multiplied by the dis-
ance through which it moves is equal to the power multi-
plied by the distance through which it moves. (86.)
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It is the law of every machine that the power and
weight will balance each other when the power multiplied
by the distance through which it moves is equal to the .
weight multiplied by the distance through which it moves
in the same time. (87.)

A compound lever is a machine in which two or more
simple levers are combined. (89.)

The rack and pinion is a lever whose long arm appears in
the crank, and whose short arm is multiplied in the pinion.
~(92.)

In the windlass, the barrel and the rope take the place
of the pinion and the rack. {93.)

In the wheel and axle, the long arm of the lever is multi-
plied as well as the short one. (96.)

When the axle is upright the wheel and axle is called
a capstan. (95.)

Several wheels are often combined so as to act upon
one another. (98.)

The wheels may be made to act upon one another by
means of cogs, or by means of be/ts. (99, 101.)

The direction in which a force acts may be changed by
means of a single fixed pulley. (102.)

In a system of pulleys, the mechanical advantage de-
pends upon the fact that e stretched rope will have the
same tension throughout its whole length. (104.)

A system of pulleys may be arranged with one rope, or
with several ropes. (105, 106.)

The fourth simple machine is the indined plane. (107.)

The fifth simple machine is the wedge. This is really
a movable inclined plane which is pushed under the
weight to be raised. (109.)

The sixth simple machine is the serew. This is also
a movable inclined plane arranged round a cylinder.

Hunter’s differential screw and the endless screw are im-
portant modifications of this simple machine. (111-113.)
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PROBLEMS.

97. In a lever the short arm is 5 decimetres long, and
the long arm 61 decimetres long. How far will the end of
the long arm move while the end of the short arm moves
through 3 centimetres ?

98. How far will the end of the short arm move while
the end of the long arm is moving through 3o centimetres?

99. In a lever the short arm is 2 metres long, and the
long one 50 decimetres long. A power of 2 kilogrammes is
applied to the end of the long arm. What weight at the
end of the short arm will it balance ?

10o. While the weight in the last example is moving
through 3 decimetres, how far will the power move?

101. A weight of 6o decagrammes is applied at the end
of the long arm of the lever in the above example. What
power must be applied at the end of the short arm to
balance it?

102. In a rack and pinion the radius of the pinion is 10
decimetres. What must be the length of the crank in order
that a power of 8 grammes may balance 300 grammes of
weight ?

103. In a wheel and axle the circumference of the wheel
is 6 metres and that of the axle 3o centimetres. What
weight will a power of 3 grammes balance?

104. In a train of wheels a power of 1 gramme balances
a weight of 43 kilogrammes. What distance must the
power move through while the weight moves through
50 decimetres?

105. In a system of pulleys a power of 1 gramme balances
a weight of 245 kilogrammes. How far will the weight
move while the power is moving through 1 metre?
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HAND POWER.

114. We have now seen how forces may be transformed, -
so that a small force acting through a long distance shall
be equivalent to a great force acting through a short dis-
tance, or a great force acting through a short distance shall
be equal to a small force acting through a great dis-
tance. We next inquire what are the sowrces of mechan-
ical power.

115. Hand Mackines.— One of the most familiar sources
of mechanical power is the human hand. Machines by
which this power is applied to doing work are called Zand
machines. An iron crow-bar is one of the simplest hand
machines. It is, as we have seen (84), a lever of the first
or second kind, according to the way in which it is used.

The ordinary windlass and the capstan are examples
of hand machines of the wheel and axle kind; while
the tackle which is so often used for hoisting weights is
an example of a hand machine of the pulley kind.

Fig. 74.

(&7

116. The Crab.— The crab, shown in Figure 74. is :
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hand machine of the wheel and axle class. It consists of
a pinion 2 turned by two cranks C and C, and acting upon
the toothed wheel 7. To the axis of this wheel is fixed
the barrel D, to which the weight is hung by the rope 7.

The gain of power in this machine can be computed by
the principles already explained. (94, 98.)

The crab is much used for setting stone in the building
of houses, and for other work of the same kind.

117. Zhe Derrick. — The derrick (Figure 75) consists of
a mast M, which.is kept
upright by means of ropes,
or guys, G,G, fastened to
posts driven into the earth.
B is an arm, or boom, at-
tached to the mast by a
hinge, and kept in any re-
quired position by means
of the rope &’. The mast
and boom serve as the
supports of a system” of
pulleys, worked by a crad
at the foot of the mast.
L is the load, or weight
to be raised.

The system of pulleys
in the derrick represented
here is precisely like that
shown in Figure 65, and
the mechanical advantage
from its use will be the same as there explained ; and this,
multiplied by the mechanical advantage obtained by means
of the crab, will give the whole gain of power in the
machine.

Fig. 75.
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HORSE POWER.

118. The strength of horses is employed in drawing -
Fig. 76. loads over our roads, which,
~ as we have seen, are in many
cases inclined planes. Horses
are often wused in raising
weights by means of pulleys,
as shown in Figure 76.

119. Haorse Powers. — Ma.
chines by which the strength
= of horses is applied to the do-
ing of work are usually called
horse powers. In some of these
the horse walks round a circle,
turning an upright shaft, which
may give motion to a #rain of
wheels (98) for driving various
kinds of machinery; or to a
capstar (95), as shown in Fig-
ure 77; or to a screw, which may be used for pressing
cotton into bales, or any similar work.

&

Fig. 77.

In another class of horse powers, the horse is placed on
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the surface of a large horizontal wheel, or on a movable
platform. In this case it is the road, and not the horse,
that travels. One form of this kind of horse power is shown
in Figure 78. It consists of a platform made of wooden

Fig. 78.

bars fastened to a chain, which passes round two wheels.
The horse is put upon this endless platform, as it is called,
and is harnessed to the frame of the machine, as repre-
sented in the Figure. When the horse draws, he pushes
the platform backward with his feet, and thus gives motion
to the wheels round which it passes. To these wheels
machinery may be connected in any of the ways already
described.

WIND POWER.

120. We have a familiar example of the wind as a source
of mechanical power in the
sailing of ships. .

These are rigged so as t
present to the wind a large
extent of canvas, called saés.
The wind blowing against
these urges the ship forward.

Sometimes sails, or broad
vanes of wood, are arranged

-
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on the arms of a wheel which is mounted in a high tower.
The wind blowing against these arms causes the wheel to
rotate, and by means of wheel-work this is made to carry -
other machinery. Such an arrangement is called a wind-
mill, and is shown in Figure 79.

WATER POWER.

121. Water Wheels. — One of the most important
sources of mechanical power is that of falling water.
The falling or running water is made to turn a wheel,
called a water wheel, and this wheel by means of bands
or gearing is made to work almost any kind of ma-
chinery.

Water wheels are of
various forms. Some
turn on an upright axis,
and others on a hori-
zontal axis. The latter
are called vertical water
wheels and the former
horizontal water wheels.

122. Vertical Walter
Wheels. — One of the
most common forms of
vertical water wheels is
represented in Figure
8o. It consists of a series of boxes, or duckels, arranged
on the outside of a wheel or cylinder. Water is allowed
to flow into these buckets on one side of the wheel, and
by its weight causes the wheel to turn. The buckets are
so constructed that they hold the water as long as possible
while they are going down, but allow it all to run out be-
fore they begin to rise on the other side.

A wheel like this is called a reast-wheel.
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The overshot wheel is similar to the breast-wheel in
all respects, except that the water is led over the top
of the wheel and poured into the buckets on the other
side.

The undershot wheel has boards projecting from its cir-
cumference, like the paddle-wheel of a steamboat. The
water runs under the wheel, and turns it by the force of
the current pressing against the boards.

123. Barker's Mill. — In Figure 81
we have a hollow upright cylinder,
with two horizontal arms at the bot-
tom, and turning on an axis. The
cylinder is open at the top, but closed
below, except that it has two holes on
opposite sides of the arms near the
end, as shown in the Figure. If wa-
ter be poured in at the top, the cylin-
der begins to turn round, and will con-
tinue to turn as long as the supply of
water is kept up. If the holes in the
arms are stopped up, the cylinder ceases to move. This
apparatus is known as Barker’'s mill. Its action is easily
understood when we recollect that liquids press equally in
all directions (17). If the holes in the arms are plugged
up, the water presses forward against the plug; and it
presses backward against the opposite part of the arm with
an equal force. These two equal forces acting in opposite
directions would just balance each other, so that there
would be no motion. If now we remove the plug, there
will be no pressure against that part of the arm to balance
the backward pressure against the opposite side ; and the
arm consequently turns backward. As the openings in
the two arms are on opposite sides of the tube, the back-
ward pressure on each arm tends to turn the cylinder
round in the same direction.

5 G
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This machine is found to gain in
power by bending round the arms, as
shown in Figure 82 ; for the water is-
thus made to press more powerfully
against the bend of the arm as it flows
through the tube. It will be noticed
that there are two forces which tend to turn the wheel in
this case ; (1) the reaction proper, caused by the removal
of the pressure at the opening at the end; and (z) the
angular force of the current as it strikes against the bend
of the arm.

124. The Turbine Wheel. — The power of Barker’s mill
(Figure 82) would evidently be increased by increasing the
number of the arms. Instead of these arms we might
have curved partitions placed between two flat discs, form-
ing a wheel, as shown in Figure
83. Sucha wheel is called a reac-
tionary turbine, since the reaction-
ary force is still predominant.

Suppose now that the discs and
partitions were cut round where
the dotted circle is seen in the fig-
ure, and that the outer part were
supported in some way beneath,
so that it might turn round freely
while the central parts of the wheel were kept stationary.
If water were poured into the wheel from above, the outer
part would, of course, turn round just as the whole wheel
did before it was cut in two. For the action of the water
against the partitions would evidently be the same as be-
fore, and it was this action of the water which turned the
wheel. And there would be this advantage in the use of
the divided wheel, that the outer part, while furning, would
not have to carry the weight of the whole column of water,
as the wheel did before it was divided.

Fig. 83.
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Again, by turning the inner se” of partitions as showa

i Figure 84, the current is
made to strike the outer par-
tition in such a direction as to
make its angular force the
greatest possible. A wheel
thus arranged is the ordinary
turbine, and in it the angular
force of the escaping current
is the chief motive power. It
is the most efficient water-
wheel ever constructed.

A section of one form of

this wheel is shown in Figure 8s. " The wheel 4 & cor-

responds to the outer part of the
wheel in Figure 83. It is supported
from below and turns on an axis, as
represented. Within this wheel are
stationary partitions curved, as shown
in Figure 84. These partitions are
placed at the bottom of a large
cylinder, into which the water is
brought by the pipe o. The water
flows between the fixed partitions
against the partitions of the wheel
b b, causing it to turn round rapidly.
The water is then discharged at the
circumference of the wheel 4 4.
There are many kinds of turbines,
and their effective power is from 75
to 88 per cent of that in the acting

body of water. In the best forms of overshot and breast
wheels it is from 65 to 75 per cent, and in undershot whee!s

from 25 to 33 per cent.
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STEAM POWER.

125. Marce!'s Globe.— In Figure 86 we have a stout
brass globe containing water, and serving as a boiler. Into
the top is fastened a glass manometer

Flg"%' tube (48) about three feet long, whose
fﬁ lower end dips under mercury placed
in the bottom of the globe. Through

i another opening passes the tube of a

thermometer, the bulb of which is in-
side the globe.

Open the stopcock seen on the
H right of the globe, boil the water for
i some time to expel the air, and then
close the stopcock. As soon as the
i steam formed by boiling the water is
3 thus prevented from escaping, the
temperature of the globe begins to
rise. At the same time, the expan-
sive force of the steam will increase,
raising the mercury in the manometer;
and the hotter the globe gets, the
higher the mercury rises.

We see, then, that when steam is
formed in a confined space, its expan-
sive force, or elasticity, increases with

the temperature. E

126. The Steam Engine. — The elastic force of the steam
thus formed can be made to work a piston by the arrange-
ment shown in Figure 87.

The steam coming from the boiler by the tube x passes :
into the box 4. From this box extend two pipes, @ and 5,
for carrying the steam, one above and the other below, the
piston. A sliding valve y is so arranged that it always
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closes one of these pipes. In the right-hand Figure the
lower pipe 4 is open, and the steam can pass in under the
piston and force it up. At the same time the steam which
has done its work on the other side of the piston passes
out from the cylinder through the pipes @ and O.

Fig. 87.

The sliding valve is connected by means of the rod i
with the crank of the engine, so that it moves up and down
as the piston moves down and up. As soon, then, as the’
piston has reached the top of the cylinder, the sliding valve
is brought into the position shown in the left-hand Figure.
- The steam now passes into the cylinder above the piston
through the pipe @ and forces the piston down, and the
steam on the other side which has done its work goes out
through 4 and O. Thesliding valve is now again in the po-
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sition shown in the right-hand Figure, and the piston is
driven up again as before ; and thus it keeps on moving
up and down, or in and out. This kind of motion is called.
reciprocating motion.

In using the engine for doing work, it is generally neces-
sary to change this reciprocating motion into a rofary
one ; that is, to make the piston, as it moves up and down,
turn @ wheel. This is usually done by means of a craznk.

Fig. 88. The crank is sometimes connected
with the piston-rod directly, the
cylinder being placed either hori-
zontally, as shown in Figure 88,
or upright, as in the engine represented in Figure go. In
other cases, the piston-rod turns the Fig. So.
crank by means of a walking-beam, the
arrangement and action of which will
be understood from Figure 89. The
walking-beam is much used for large
engines, especially on steamboats.

In Figure 9o we have a picture of
a small stationary steam-engine, which
will serve to show how the parts of the machine already
described are put together, and also to illustrate those
parts which have not yet been mentioned.

On the right is the cylinder 7, which is supplied with
steam from the boiler by the pipe x. The waste steam is
carried away by the pipe Z. Within the cylinder is the .
piston moving up and down as explained above. The

‘piston-rod 4 moves the crank A/, and thus turns the axle
D, which may be connected with the machinery to be
driven, by means of a belt X, as here, or by a train of
wheels, or in various other ways. Q is a pump, like that
shown in Fig. 36, which supplies the boiler with water,
through the pipe £. Itis worked by the engine itself by
means of the rod g and the cam, or eccentric, E.
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127. The Governor.— It often happens that the work to
be done by an engine is liable to vary in an irregular way.
Parts of the machinery which it drives may be stopped or
started at any moment, or the work which the machinery
has to do may be greater at one time than another. It is
very desirable that there should be some means of regulat-
ing the speed of the engine, so that it may not be too sud-
denly quickened or retarded by these variations in the
resistance which it has to overcome. The governor is a
simple contrivance by which the engine is made to regu-
late its own speed. It consists of two arms, £ » (Figure
go), carrying heavy iron balls, », », at one end, and
attached by joints at the other end to the rod « The
whole is made to rotate by means of the bevel-wheels «
and & (100), which are turned by the engine itself. If the
speed of the engine is quickened, the governor rotates
faster, and the arms and balls tend to separate more and
more ; just as two balls hung side by side will do when the
strings by which they are held are twirled by the hand.
As the arms spread out they raise the ring 7, which slides
freely on the rod ¢, and as 7 rises, it acts upon the levers
s, £, and O, which partially close valve @ in the pipe x.
This valve is seen at 7 in Figure 87. The supply of steam
from the boiler is thus diminished, and the speed of the
engine is retarded. The governor now rotates less rap-
idly, the arms drop a little, the ring 7 slides down, the
valve in x is opened a little more, letting steam pass to
the cylinder more freely, and the speed of the engine is
quickened again. Thus any tendency to go faster or
slower corrects itself very promptly through the agency of
the governor, and the engine runs at almost exactly the
same speed, however much the resistance may vary.

128. The Fly-Wheel.— As has been stated, a crank is
commonly used to change the reciprocating motion of the
piston into a rofary one. But as the crank turns round, it
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will be seen that there are two points where the piston-rod
1s pushing exactly in the direction of the point round which
the crank moves ; and that at these points it does not tend
to turn the crank at all. There must therefore be some
means of carrying the crank past these dead poinis, as they
are called. This is the office of the fy-wheel V, a heavy
iron wheel attached to the axle 2. The great momentum
of this heavy mass tends to carry the axle round with a
uniform motion, notwithstanding the variations in the
power acting upon it.

129. High Pressure and Low Pressure Engines. — When
the steam after doing its work in the cylinder is carried
into a cold chamber, the engine is said to be of Jow press-
ure; when it is forced out into the air, the engine is said
to be of %igh pressure. In the former case, the steam is con-
densed into water in the cold chamber, and a vacuum is
thus formed behind the piston. In the latter case, the
piston has to act against the pressure of the atmosphere,
which, as we have learned (38), is equivalent to a weight
of 15 pounds on each square inch of its surface. It is
evident that a greater pressure of steam will be necessary
to move the piston in the latter case.

130. Zhe Boiler.— In the boiler the steam is produced,
and confined until it is used in moving the piston. It must
therefore be capable of furnishing all the steam needed by
the engine in any given time, and strong enough to resist
the expansive force of the steam shut up within it.

Boilers are usually made of plates of wrought iron or
copper riveted together.  Copper is the best material, but
iron is almost always used on account of its cheapness.

In order to get the full effect of the fire, the hot gas and
smoke from it are usually made to pass through flues or
tubes in the body of the boiler; and the water comes
directly in contact with these flues or tubes. This is il-
lustrated in the Cornish boiler, as it is called, shown in

5 *
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Figure 91, and considered one of the best forms of boiler.
It is a cylinder, frequently
more than forty feet long,
and from five to seven
feet in diameter, with two
cylindrical flues, B B, ex-
tending its whole length.
These flues serve as the
furnace in which the fire is built. The hot gas and smoke
after passing through the flues are made to circulate round
the outside of the boiler before escaping into the chimney.

Another form of boiler is represented in Figures 9z and
93. This boiler is cylindrical, but instead of the flues of
the Cornish boiler, it has two long cylindrical tubes, B B,
cornected with it by upright pipes. These tubes are ex-
posed to the direct flame of the fire. The hot gases and
smoke after passing under the tubes to the other end of
the boiler, return through the flue C to the front again,
and are finally discharged into the chimney by the side
flues D D.

In Figure g2, S is the safety-valve. The weight acting
on the lever keeps the valve closed until the pressure of
the steam in the boiler becomes too great for safety, when
it opens and allows a part of the steam to escape, and thus
reduces the pressuré. 7 is the tube through which water
is supplied to the boiler ; 7 the tube by which the steam is
sent to the cylinder. 7 is the man-hole, through which
workmen can enter the boiler to clean or repair it. s is an
alarm whistle, so arranged that it is opened by the float £
when the water sinks too-low in the boiler. 2 is a con-
trivance for showing the depth of water in the boiler by the
rising and falling of the weight @, which is connected by
the lever with the float #. A simpler and better arrange-
ment for the same purpose consists of a strong glass tube .
placed outside the boiler, but communicating with the
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water within. The water in this tube stands of course at
the same height as that in the boiler (18).

Figure 94 represents the usual form of the boiler of a -
locomotive engine. The furnace or fire-box, A, is within
the boiler, and is surrounded by water except beneath and
at the door 2. A large number of stout tubes extend from

Fig o4.

che fire-box through the boiler to the smoke-box B. The
hot gases and smoke pass through these before they escape
into the chimney. Z is the sfeam-dome, from the top of
which a large tube conveys the steam into the chamber Z
from which it passes by tubes on each side to the cylinders.
The waste steam from the cylinders passes into the chim-
ney through two pipes meeting at A, and thus increases
the draught of the furnace.

131. The Locomotive Engine.— This machine is shown in
full in Figure 95. The boiler X X has just been described.
D is the fire-box; Y, the smoke-box ; @, the tubes con-
necting the two; O, the door for putting in fuel ; 7, the
glass water-gauge, already described, which shows the
height of the water in the boiler ; A, the vent-cock, by
which the water can be drawn off from the boiler; £ &,
the feeders which conduct water from the fender to two
force-pumps (not seen in the Figure) by which it is forced
into the boiler; 7 the safety-valves, kept down by spiral
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springs in the cases ¢, g, the steam-whistle; &, a rod
which controls the valve /' by which steam is let into the
steam-pipe 4. The engineer is represented as holding in
his hand the lever by which this valve is opened more or
less, to regulate the speed of the engine. The steam-tube
A passes through the boiler, as shown by the dotted lines,
into the smoke-box, where it branches off to the two cylin-
ders. In this engine there is no chamber like that marked
F in Figure 94. One of the cylinders is seen at £ laid
open to show the piston 2. The sliding valve by which
the steam is admitted to the cylinder is precisely like the
one figured and described above (126) ; but, being behind
F under the boiler, it does not appear here. Z is the pipe
by which the waste steam is discharged into the smoke-
pipe Q. K is the connecting-rod, by means of which the
piston turns the crank 4/ on the axle of the driving wheels.
In starting the engine the valves must be moved by hand.
This is done by means of the lever B and the rod C. ¢/
are stop-cocks, through which any water condensed in the
cylinders can be driven out ; 7, the rod for opening these
cocks.

The other parts will be understood without any de-
scription.

It will be seen that the locomotive is a 4igh pressure
engine.

SUMMARY.

The /luman hand is a source of mechanical power.
It may be used to work any of the simple machines. (115.)
The ¢rab (116) and the derrick (117) are hand machines.
The strength of the horse is a second source of mechan-
ical power. (118.) ]
The horse is employed to draw loads up inclined
planes; to elevate weights by means of pulleys; to turn
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a crank or shaft; and to ‘turn a wheel by treading upon
a movable inclined surface in the form of an endless plat-
form. (rr19.)

The wind is a third source of mechanical power.

This source of power is employed to propel ships and
to drive windmills. (120.)

The downward and lateral pressure of water is a fourth
source of mechanical power. (rz1.)

The downward pressure of water is made to turn a ver-
tical water wheel. (122.)

The lateral pressure of water is made to turn a /lorizontal
or reaction water wheel. (123.)

The turbine wheel is a reaction wheel, and the most
efficient water wheel known. (124.)

The clastic force of steam is a fifth source of mechanical
power. (125.)

The machine by which this source of power is applied
is called a steam engine. (126.)

The essential parts of the steam engine are the doiler,
in which the steam is generated ; the ¢ylinder, in which
the expansive force of the steam is made to work a piston ;
and the ¢rank, by which the motion of the piston is made
to turn a shaft. (130, 126.)

Steam engines may be either of Zigh or low pressure.

(r29.)












NATURE AND PROPAGATION OF
SOUND.

SOUND-WAVES.

1. A Sounding Body is a Vibrating Body. — If a glass
belljar held by the knob be struck with the knuckle, it
gives out a sound. If a bit of metal, ivory, or other hard
substance be placed within the bell, as seen in Figure 1,

Fig. 1.

it is tossed up and down rapidly, showing that the bell is
vibrating.

By similar experiments, it is found that every body is vi-
brating while giving out sound, and that it is only by caus-
ing a body to vibrate that it can be made to give out sound.

2. Sound will not pass through a Vacuum.—In Figure 2,
the bell B is suspended by silk threads under the receiver
of the air-pump. The bell is struck by means of clock-
work, which can be set in motion by the sliding-rod ». If
the bell be struck before exhausting the air, it can be dis-
tinctly heard ; but as the air is exhausted, the sound be-
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comes fainter and fainter, until at last it can hardly be
perceived even with the ear close to the receiver. Sound,
then, cannot pass through a vacuum.

The slight sound which is
heard is transmitted by the
little air left in the receiver,
and by the cords which hold
up the bell.

3. Sound passes through all
Gases. — If hydrogen or any
other gas be now allowed to
pass into the receiver, the
sound of the bell is heard
again. It will be noticed
that the sound is different
in different gases.

4. Sound passes through
Liguids and Solids. — If a
bell be put under water and
struck, it can be heard. If
a person puts his ear close
to the rail of an iron fence,
and the rail be struck at a
considerable distance, he
hears the blow twice. The
first sound comes through the rail ; the second, which soon
follows, comes through the air. These experiments show
that sound passes through liquids and solids.

A slight scratch upon the iron rail, which could not be
heard at all through the air, is heard distinctly when the
ear is placed against the rail ; showing that the solid trans-
mits the sound better than the air. By placing the ear
near the ground, the tramp of horses or the tread of men
can be heard at a great distance, the sound being conveyed
by the solid earth.

Fig. 2.
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5. Sound is propagated by means of Vibrations.— We
have seen (1) that sound is produced by vibrations. We
next inquire how it is propagated. Let us first examine
the condition of the molecules of the air in front of the
sounding body. Let the middle line of dots in Figure 3

Fig. 3.
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represent the position of the molecules when at rest.
These molecules, as we have learned, are not in contact,
and they are kept apart by an elastic force acting between
them like a bent spring. Now, as the vibrating surface
moves forward it pushes the molecules of the air before it ;
but, since it takes time to transmit the motion from mole-
cule to molecule, they do not all move on together. The
lower line of dots in the figure represents their condition
when the vibrating surface has ceased to move forward.
The molecule & is just ready to come to rest, and the
molecule ¢ just ready to begin to move, while all the mole-
cules between are moving forward. It will be seen that
the molecules between ¢ and ¢ are crowded together, or
compressed.  Just as the molecule & comes to rest, the
molecule beyond ¢ will begin to move; when ¢ comes to
rest, the second molecule beyond ¢ begins "o move ; and
so on. Thus the line of compressed molecules keeps of
the same length, and continually moving so:ward.

Suppose the surface to be at rest at @, and to move
backward instead of forward. The elastic force acting
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between the molecules in front of it will cause them to
follow it one after another. If it is just as long in going
backward as forward, the molecule ¢ will be just ready to
start when the molecule @ stops. The upper line of dots
represents the condition of the molecules when the vibrat-
ing surface has ceased to move backward. The molecule
@’ is just ready to stop, and the molecule ¢” just ready to
start, and the molecules between are moving backward.
It will be seen that the molecules of this set are spread
apart, or extended. When the molecule 4 is ready to stop,
the molecule beyond ¢” is ready to start; and so on. Thus
it will be seen that the line of extended particles keeps of
the same length, and continually moving forward. As the
vibrating surface moves backward the instant it has moved
forward, the set of extended particles follows on directly
after the set of compressed particles ; and these two sets
are sent out one after the other as long as the body is
sounding ; that is, if from &” to ¢’ we have a set of ex-
tended particles, from ¢’ to ¢” we shall have a set of com-
pressed particles, from 0” to p” a set of extended particles,
and so on. It will be noticed that the molecules in the
first set are moving forward ; those in the second set,
backward ; those in the third set, forward ; and so on.
Of course each molecule is merely swinging backward and
forward, or vibrating. We see, then, that when a body is
sounding, the molecules of air about it are made to vi-
brate, and that they vibrate in sefs. Two successive sets
of these vibrations constitute what is called a wave of
sound ; that is, in the figure the portion of the upper line
of dots from &” to ¢” is a wave. These sound-waves run
out from a sounding body in every direction, just as the
waves-in water spread away in circles from the point where
a stone has been thrown into it. So long as the sound-
waves are passing through the air, their outline is spheri-
cal. '



SOUND. 7

In like manner, sound is propagated through solids and
liquids by means of vibrations.

Sound, then, is produced by vibrations, and these vibra-
tions are passed on from molecule to molecule through the

" intervening bodies to the ear.

It will now be seen why sound cannot pass through a
vacuum.

6. The Inlensily of Sound depends upon the Amplitude of
the Vibrations. — If the belljar in Figure 1 be struck
lightly, it will give out a faint sound, and the bit of metal
will be but slightly agitated ; if it be struck a harder blow,
it will give out a louder sound, and the metal will be more
violently agitated. It is evident that in the latter case the
bell-jar moves backward and forward through a greater
‘space than in the former ; in other words, that the ampli-
tude of its vibrations is greater. The intensity of sound,
then, depends upon the amplitude of the vibrations of the
sounding body.

7. The Intensity of Sound diminishes as the Square of the
Distance of the Sounding Body increases. — If we place a
bell ten yards off, and four bells of the same size twenty
yards off, we shall find that the sound of the one bell will
be just equal to that of the four bells. At the distance of
thirty yards, nine bells would be necessary to produce a
sound equal to that of the one bell at ten yards. Sound,
then, diminishes in intensity as the square of the distance
from the sounding body increases. This is as we should
expect. As the sound-waves spread away in all directions
from the sounding body, a greater and greater number of
particles of air must be set in motion, and the motion
of each must be more feeble ; and, since the surfaces of
spheres increase as the squares of their radii, the number
of particles to be set in motion increases as the square of
the distance from the sounding body.

8. Speaking-Tubes. — If the sound-waves are prevented
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from spreading in all directions, the particles of air lose
little of their motion, and the sound little of its intensity.
Thus Biot found that through one of the water-pipes of -
Paris words spoken in a very low tone could be heard at
the distance of about three quarters of a mile. The sides
of the pipe kept the sound-waves from spreading. In the
same way, conversation can be carried on between distant
parts of a large building by means of small tubes, called
speaking-tubes. '

9. Sound travels through the Air at the Rate of 1,090
Feet a Second. — The velocity of sound in air has been
several times determined by experiment. In 1822, the
French Board of Longitude chose two heights near Paris,
and from the top of each fired a cannon at intervals of
ten minutes during the night. The time between seeing
the flash and hearing the report was carefully noted at
both stations, and the average of the results showed that
sound travels through the air at the rate of 1,090 feet a
second. In such experiments, the time taken by the
light to pass between the stations is too small to be per-
ceived.

10. The Observed and the Computed Velocity of Sound. —
From the known elasticity and density of air, Newton com-
puted that the velocity of sound should be 916 feet a
second. That the observed velocity is greater is due to
the change in the elasticity of the air in the two portions
of the sound-wave, owing to the development of heat in
the compressed part and its absorption in the extended
part. That heat is developed by compression of the air
may be shown by putting some tinder in a fire syringe
(Figure 4) and quickly pushing down the piston : the
tinder will take fire. Now heat increases the elasticity of
the air, and the increased elasticity in the compressed part
of the wave has the same effect as putting stiffer springs
between the molecules in front, so that they will impart
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their forward motion to one another more promptly ; while
the diminished elasticity in the extended portion has the
same effect as placing weaker springs between
the molecules behind, so that the molecules can
also return more promptly. Thus it will be seen
that the change of elasticity in the two portions of
the wave, by the development and absorption of
heat, increases the rapidity with which the mole-
cules can impart their vibratory motion to one an-
other ; and this rapidity is the velocity of sound.

11. The Velocity of the Sound-wave depends on
the Elasticity as compared with the Densily of the
Medium. — As long as the elasticity remains the
same, the velocity of the sound-wave will be di-
minished by increasing the density ; for, the
greater the density, the greater the number of
molecules to be put in motion, and the slower
the motion will be transmitted. While the den-
sity remains the same, the velocity increases with
the elasticity, as we have seen above. This ex-
plains the fact that the velocity of sound at a
great height in the air is the same as near the earth. As
we ascend, the temperature falls and the elastic force of
the air becomes less, but the density of the air diminishes
at the same rate. If the density and elasticity both in-
crease at the same rate, the velocity will remain the same.
The greater, then, the elasticity of the medium compared
with its density, the greater the velocity of sound. It will
be shown farther on how the velocity of sound in different
gases can be ascertained.

12. Zhe Velocity of Sound in Waler is about 4,700 Feet a
Second. — This was determined at the Lake of Geneva, in
1826, by Colladon and Sturm. They found that, when a
bell was struck under water on one side of the lake, the
sound could be distinctly heard at a distance of nine miles

I*

Fig. 4.
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on the other side by putting the ear to one end of a tube
whose other end was in the water. It was thus found that
the velocity of sound in water is about 4,700 feet a second.
The method of finding how fast sound travels in different
liquids will be explained in another place.

13. Sound travels through Solids faster than through Air.
— It is found by the experiment with the iron rail men-
tioned above (4) that the velocity of sound in a solid body
is greater than in the air. It will be shown hereafter how
we can find the velocity of sound in solids.

14. On meeting a Medium of different Densily the Sound-
wave is partially reflected. — The transmission of vibrations
in a sound-wave from one particle to another may be illus-
trated by means of two ivory balls hung side by side. If
the balls are of the same size, and one be raised and
dropped against the other, the first gives up all its motion
to the second and itself comes to rest. If the first ball is
smaller than the second and be let fall against it, the sec-
ond moves forward and the first rebounds. If the first is
larger than the second, it follows the second a little way
and then falls back again. In the first case the balls illus-
trate the condition of the molecules in a uniform medium :
each molecule gives up all its motion to the next, and
would come to rest were it not kept vibrating by the sound-
ing body behind. In such a medium, then, the sound-wave
moves steadily forward. In the second case the balls il-
lustrate the condition of the molecules of a rarer medium
contiguous to those of a denser medium. When the sound-
wave meets this denser medium, the molecules of the rarer
medium give up only a part of their motion to those of the
denser, and themselves rebound, giving rise to a reflected
wave. In the third case the balls illustrate the condition
of the molecules of a denser medium contiguous to those
of a rarer medium. Here it will be seen that the sound-
wave is partially reflected on meeting a rarer medium.
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Whenever, then, the sound-wave meets a medium of differ-
ent density, it is partially reflected.

15. When a Sound-wave is reflected, the Angle of Re ec-
tion is equal to the Angle of Incidence. — In Figure 5 we
have two parabolic mirrors,. with a watch placed in the

Fig. s.

rocus of the upper one. The sound-waves spread out
from the watch, meet the surface of the upper mirror, and
are reflected from that to the lower mirror, by which they
are again reflected. If the mirrors are several yards apart,
it will be found that the ticking of the watch can be heard
distinctly on placing the ear at «, the focus of the lower
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mirror, though it cannot be heard at any other point near
that mirror. This shows that the reflected sound-waves
are all concentrated at the point @. By what path have
they reached this point? In Figure 6, # is the focus of

the parabolic mirror V 4

s M, and the line 4 X,

M —— L passing through the focus
4\ and the centre of the mir-

i P ror, is called its axzs. The

A £ B X lines M P and N P are
\ / o drawn so as to be perpen-
N\ dicular to the surface of
NN e ®  the mirror at the points

M and N, If we draw
the lines # M and # NV, showing the direction in which the
sound-wave has travelled from # to these points, they will
make the same angles with the perpendiculars as the lines
M L and &NV O drawn parallel to the axis. This will be
true whatever may be the situation of the points A7 and V.
If the sound-waves on meeting this mirror are all reflected
in lines parallel to the axis, they will, on meeting the sec-
ond mirror, be reflected to its focus. We have found, by
the experiment with the watch, that they are reflected to
the focus of the second mirror. They must, then, have
been reflected from the first mirror in a direction parallel
to its axis ; and the angle 2 A/ Z, at which any portion of
the wave left the mirror, must have equalled the angle
£ M P at which it struck the mirror. The former angle is
called the angle of reflection, and the latter the angle of in-
cidence. 'Whenever, then, a sound-wave is reflected, the
angle of reflection is equal to the angle of incidence.

16. Zchoes.—When there is a sufficient interval between
the direct and the reflected sound, we hear the latter as an
echo.  The reflected sound has the same velocity as the
direct sound, so that the echo of a pistol-shot from the
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face of a cliff 1,090 feet distant is heard two seconds after
the explosion.

An echo in Woodstock Park repeats seventeen syllables
by day, and twenty by night; one on the banks of the
Lago del Lupo, above the fall of Terni, repeats fifteen.
The tick of a watch may be heard from one end of the
abbey church of St. Albans to the other. In Gloucester
Cathedral, a gallery of an octagonal form conveys a whis-
per seventy-five feet across the nave. In the whispering
gallery of St. Paul’s, the faintest sound is conveyed from
one side to the other of the dome, but is not heard at any
intermediate point. . At Carisbrook Castle, in the Isle of
Wight, is a well 210 feet deep and 12 wide. The interior
is lined with smooth masonry. When a pin is dropped
into the well, it is distinctly heard to strike the water.

In some cases the sound is reflected several times, and
a succession of echoes is heard, each feebler than the pre-
ceding, since a part of the sound is lost at each reflection.
In mountain regions such echoes are common, and some-
times the effect is very remarkable. There is a deep val-
ley called the Ochsenthal, near Rosenlaui, in Switzerland,
where the echoes warble in a wonderful manner.

Sounds are also reflected from the clouds. When the
sky is clear, the report of a cannon on an open plain is
short and sharp ; while a cloud is sufficient to produce an
echo like the rolling of distant thunder. A feeble echo
also occurs when sound passes from one mass of air to
another of different density. Humboldt relates that, from
a certain position on the plains of Antures, the sound of
the great falls of the Orinoco resembles the beating of a
surf upon a rocky shore, being much louder by night than
by day. This is not due to the greater stillness of the
night, for the hum of insects and the roar of beasts ren-
der the night much noisier than the day. But between
the place where Humboldt was and the falls lay a vast

)
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grassy plain, with many bare rocks rising from it. When
exposed to the sun, these rocks became much hotter than
the adjacent grass; over each of them, therefore, rose a
column of heated air, less dense than that which sur-
rounded it. Thus by day the sound had to pass through
an atmosphere which frequently changed its density ; the
partial echoes where the rare and dense air met were in-
cessant, and the sound was consequently enfeebled. At
.night there were no such differences of temperature, and
the sound-waves, travelling through an atmosphere of uni-
form density, reached the ear without any loss from reflec-
tion.

17. When a Sound-wave passes obliquely into a Medium
of different Density it is refracted. — Let a b (Figure 7) be

Fig. 7. Vig. 8.

a portion of a sound-wave moving in the direction of the
arrow, and @ ¢ be the surface of a medium O of different
density from A7, in which the wave has been moving. If
the elasticity of O is such that the wave will move faster
in it than in A7 the portion @ of the wave which enters O
first will move on faster than the portion & while the latter
is moving in A, When a & is wholly within O, the second
arrow shows the direction in which it will be moving ; and
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it will continue to move in this direction so long as it is
wholly in this medium. When the direction of a wave is
thus bent, it is said to be r¢fracted. 1In this case it is bent
away from a perpendicular £ Q drawn to the surface of
the medium O.

If the elasticity of O is such that the sound-wave moves
slower in it than in A7, the portion @ of the wave (Figure
8), when it has entered O, moves slower than 4 while the
latter is in M. In this case it will be seen that the direc-
tion of the wave will be bent towards the perpendicular'
P Q.

It is evident that, if @ 4 had not met the medium O
obliquely, both ends of it would have entered O at the
same time, and its direction would not have been changed.

We see, then, that when a sound-wave passes obliquely
into a medium of different density, it is refracted, and that,
if it travels more rapidly in the new medium, it will be bent
away from a perpendicular drawn to the surface of that
medium ; while, if it travels less rapidly in the new me-
dium, it will be bent towards a perpendicular drawn to the
surface of that medium.

Fig. 9.

This refraction of a sound-wave has been shown by the
experiment illustrated in Figure 9. & is a collodion bal-
loon filled with carbonic acid gas; = is a watch hung near
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it ; and /7 is a glass funnel. By placing the ear at f and
moving the funnel about, a point will be found where the
ticking of the watch will be louder than elsewhere. This
shows that the sound-waves have beeun converged to that
point.

Figure 10 shows how the sound-waves are refracted in
passing through the carbonic acid. @ 4 is a portion of the
sound-wave. In passinginto
the carbonic acid, —a me-
dium in which it moves
more slowly than in air, —
it is' bent into the form of
m o n. On passing out
from the carbonic acid, it
is bent still farther in the
same direction, and thus
the two parts of the wave
are made to converge.

Fig. 10.

SUMMARY.

Sound originates in a vibrating body. (1.)

It is not propagated through a vacuum. (2.)

It is propagated through all elastic substances, whether
gases, liquids, or solids, by vibrations of their molecules.
These molecules vibrate in systems, giving rise to waves.
(3, 4)

Sound is propagated by vibrations. (5.)

Its intensity increases with the amplitude of the vibra-
tions, and diminishes as the square of the distance from
the sounding body increases. (6, 7).

The velocity of sound in air is 1,090 feet a second. (9.)

Its observed velocity is greater than its velocity as com-
puted by Newton, owing to the heat developed in the
compressed portion of the wave, (10.)
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The velocity of sound in any medium depends upon its
density as compared with its elasticity. (r1.)

The velocity of sound in water is about 4,700 feet a
second. Its velocity in solids is greater than in the air.
(12, 13.)

On meeting a medium of different density, the sound-
waves are partially reflected and partially transmitted.
The transmitted portion is refracted, unless the wave
meets the surface of the medium perpendicularly. (14, 17.)

Echoes are due to reflected sound-waves. (16.)

MUSICAL SOUNDS.

18. Difference between Noise and Musical Sounds. — In
Figure 11 we have an instrument called the gyroscope, con-
sisting mainly of a heavy brass ring & surrounding a disc
which rests upon a steel
axis. To this axis is fast-
ened a small toothed wheel
W. By winding a string
round the axis and then
drawing it suddenly out, the
ring and the toothed wheel
are made to spin rapidly.
If a card ¢ be held against
the edge of the wheel as it
rotates, a very shrill musical
sound is produced. If the
thumb be placed a moment
against the ring, the speed
of its rotation is checked
somewhat, and the sound
becomes less shrill. The
more the speed is dimin-
ished, the less shrill the

Fig. 31.
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sound becomes, until finally we hear the separate taps of
the teeth against the card.

We see, then, that when the taps are frequent enough,
they blend so as to produce one continuous sound. Such
a continuous sound is called a musical sound.

In this experiment the card is made to vibrate by strik-
ing the teeth of the wheel, and, as the teeth are at equal
distances, the vibrations follow one another at equal inter-
vals. A musical sound, then, is one in which the vibra-
tions recur at regular intervals. If they do not recur at
regular intervals, the sound is called a noise.

19. The Pitch of Musical Sounds. — We have seen that,
the faster the wheel turns, the shriller is the sound, or, in
other words, the /Zigher its pitch. Of course, the faster
the wheel turns, the more rapid are the vibrations of the
card. Hence the pitch of musical sounds depends on the
rapidity of the vibrations.

In musical sounds, as in all other sounds, the loudness
depends upon the amplitude of the vibrations.

Fig. 12.

20. The Tuning-Fork. — A convenient instrument for
producing a musical sound is the tuning-fork, shown in
Figure 12. It consists of a bar of steel bent into the form
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of the letter U, and attached to a standard. 4 B is a
wooden case open at both ends, by which the intensity of
the sound produced by the fork is increased. The fork
may be set vibrating by striking it, or by drawing a violin
bow across it. The elasticity of the steel causes the
prongs to vibrate regularly, and thus to give out a musical
sound.

21. The Siren.— The siren is an instrument for pro-
ducing musical sounds, and
at the same time register-
ing the number of vibra-
tions. It consists (Figure
13) of a brass cylinder (|
having a tube # opening into
it at the bottom, and closed
at the top by a brass plate
@ 6. This plate is pierced
with four series of holes
arranged in circles. The
innermost series contains
8, the next 10, the next 12,
and the last 16 holes. e
is a brass disc pierced with
four series of holes ar-
ranged like those below.
The holes in the plate a &
are inclined a little in one
direction, and those in & ¢
a little in the opposite di-
rection. Through the cen-
tre of the disc passes a
steel axis, the lower end 2’
of which fits into the hole
xin @ . The disc is made
to rotate by blowing into
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the tube 2 The current of air striking against the slanting
sides of the holes in @ & is directed against the sides of
the holes in @ ¢, and thus pushes it round. As it rotates,
the holes in @ & are alternately opened and closed, so that
the air escapes from the cylinder in a regular succession
of puffs, giving rise
to vibrations, which
produce a musical
- -1 . sound.
| ww T The number of
M“\W i Ul times the disc rotates
W""“N‘ﬂ,lﬂ Q : is registered by the
K i apparatus shown in
il HHE Upper partptie;
T ure 14. On the axis
‘ of the disc is an end-
less screw s, which car-
m h ries a pair of toothed
H‘Jml‘ N wheels. These are
V connected with point-
ers moving over dial-
plates on the front of
the instrument, as
shown in Figure 13.

By pushing upon «
and & (Figure 14) the
registering apparatus
can be thrown into or
out of action at any
moment.

The stops », 7, 0, p,
seen in Figure 14, are
used to open or close the different sets of holes.

22. The Rate at whick a Sounding Body vibrates may be
determined by means of the Siren.«—~1If we force air into
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the siren by means of a bellows, the disc is made to rotaté
faster and faster, and the pitch of the sound produced rises
higher and higher, as the force of the blast increases. In
this way the siren may
be made to give a
sound of the same
pitch as that of a tun-
ing-fork, or any other
sounding body ; and,
by means of the regis-
tering apparatus, the
number of vibrations
in a second may be as-
certained.  Suppose,
for instance, that the
outer set of holes is
open, and the pointers show that the disc is making 1,440
turns in a minute. As there are 16 holes in this set, there
will be 16 puffs of air, or vibrations, for each turn, or
23,040 in a minute. Dividing this by 60, we find the
number of vibrations in a second to be 384. If the
tuning-fork is giving out the same note as the siren,
it is making 384 vibrations in a second.

23. The Length of the Sound-wave. — From the explana-
tion given above (5), it is evident that the length of the
sound-wave is the distance the motion is transmitted along
the line of molecules while the sounding body is making
one vibration. The faster, then, a body vibrates, the
shorter is the sound-wave ; and, as we know the velocity of
sound in air, we can readily find the length of the sound-
wave when we know the rate at which the body vibrates.
Suppose, for instance, that the tuning-fork is making 384
vibrations in a second. As the velocity of sound in air is
1,120 feet a second* at the ordinary temperature, the

* 1,090 feet per second is the velocity at the freezing point.
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length of the sound-wave will be equal to 1,120 divided
by 384, or about 3 feet. The waves produced by a man’s
voice in ordinary conversation are from 8 to 1z feet in
length ; those produced by a woman’s voice, from 2 to 4
feet.

24. The Octave. — If the outer and inner circles of holes
in the siren are opened, the two sounds differ by what
musicians call an oc/ave. As there are 16 holes in the
outer set and 8 in the inner, the number of vibrations pro-
duced by the former must be double that produced by the
latter. One sound is the octave of another, then, when it
is produced by vibrations twice as rapid.

Fig. 16.

T

25. The Sonometer. — Another important instrument for
investigating the formation of musical sounds is the sozom-
eter (sound-measurer). The instrument is shown in Figure
16. It consists of the sounding-board A AV, above which
the string B A’ is stretched upon two movable bridges by
means of the weight /. It is used to illustrate the laws
. of the vibrations of strings.

26. The Rapidity with which a String vibrates is inversely
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as its Length.— Cause the string B B to vibrate by pulling
it to one side, or drawing a bow across it, and notice the
pitch of the sound. Place one of the movable bridges at
the centre of the string, so as to divide it into two equal
parts, and cause either part to vibrate. The sound will be
the octave of the one given out by the whole string. We
have already learned that the octave of a note is produced
by double the number of vibrations (24). The half of a
string, then, vibrates twice as rapidly as the whole string,
when the tension of the string remains the same. It can,
moreover, be proved, both by calculation and by the siren,
that the half of a string vibrates with exactly twice the
rapidity of the whole. In the same way, it can be proved
that one third of a string vibrates with thrice the rapidity
of the whole ; and so on. In general terms, then, while
the string is equally stretched, the rapidity of its vibrations
is inversely as its length.

27. The Formation of Nodes* — If we hold a feather
against the centre of the wire of the sonometer (Figure
17), and draw a bow across one half of it, we get the

Fig. 17.

octave of the note given by the whole string, showing that
one half vibrates by itself. If now a little 7ider of red

* See Appendix, L.
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paper be placed across the middle of one part of the
string, and the other part be made to vibrate while the
feather is still held at the centre, the rider is thrown off,
showing that both halves of the string vibrate. These
vibrating halves are separated by a 7ode, or stationary joint,
formed where the feather touches the string.

Hold now the feather one third of the way from the
end of the wire (Figure 18), and place a blue rider on the

Fig. 18.

longer portion of the wire, so as to divide it into two
halves, and red ones on the middle of these halves. Now
draw the bow across the shorter portion of the wire, and
the blue rider will remain at rest and the others be
thrown off, as shown in the figure ; showing that the longer
portion of the wire has been divided into two vibrating
parts separated by a node.

Again, place the feather so as to cut off one fourth of
the wire (Figure 19), and place blue riders on the longer
portion so as to divide it into three equal parts, and a red
rider on the middle of each of these parts. Draw the
bow across the shorter portion of the wire, and the blue
riders will remain at rest, while the red ones are thrown
off, as seen in the figure ; showing that the longer portion
of the wire has been divided into three vibrating parts
separated by two nodes.
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Fig. 19.

In the same way the wire may be divided into five, six,
or any number of vibrating parts separated by nodes.

28. Formation of Nodes in Vibrating Plates. — In Figure
20 we have a metallic plate supported at its centre. If

fine sand be sprinkled over the plate, and a bow be drawn
across the middle of one edge while the thumb and finger
are held against the opposite edge, the sand instantly col-
lects into lines, as seen in the figure ; showing that the
vibrating plate is at rest along these lines. The sand has
all been tossed away from the vibrating portions between

the lines.
2
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A vibrating plate may, then, be broken up into different
vibrating parts, and the lines which separate these parts
are called nodal lines. c

By holding the thumb and finger against different parts-
of the plate, a great variety of nodal lines may be obtained,
all of which may be made visible by means of sand, as in
the above experiment. Some of these nodal forms are
shown in Figure 21. :

Nodes may be formed in a similar way in bells, and in
all other sounding bodies.

29. Quvertones or Harmonics. — We have now seen that a
string or other sounding body can either vibrate as a whole,
or divide itself into a number of equal parts, each of which
vibrates independently. Tt is found that, even when it is
made to vibrate as a whole, it always does at the same
time vibrate in parts ; so that a vibrating body never gives
out a simple tone. The tone given out by a string or
other body as a whole is called its fundamental note,; the
higher tones produced by the vibrations of the parts are
called /Zarmonics or overfones. The tone produced by the
halves of a. string is called the firs¢ harmonic ; that pro-
duced by the thirds of a string, the second harmonic ; and
so on.

30. Quality, or Clang-tint. — In every vibrating string a
great number of these higher tones are produced, which,
mingling with the fundamental tone, give rise to what is
called the guality of the sound. It is this union of high
and low tones which enables us to distinguish one musical
instrument from another. A flute and a violin, though
tuned to the same fundamental note, do not give the same
sound. The overtones of the one are different from those
of the other ; and the mixtures formed by these and the
fundamental note in the two cases are therefore different.

Professor Tyndall, following the Germans, calls the mix-
ture of the fundamental tone and its overtones a c/ung, and
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the guality of the clang the c/ang-tint. Different mixtures
of tones will have different clang-tints, just as different
mixtures of colors have different tints. ’

31. The Transmission of Musical Sounds through Liguids.
— In Figure 22, 47 is a long tube filled with water, which

Fig. 22.

is placed between the tuning-fork # and the sounding-box
A B. If the fork be set vibrating in the air away from the
tube, it can scarcely be heard ; but if the foot of it be
placed upon the water in the tube, it can be heard as dis-
tinctly as when it is placed upon the sounding-box. In
both cases the box is the real sounding body, and is set
vibrating by means of the tuning-fork. Musical vibrations,
then, are transmitted through the water in the tube. Ina
similar way it has been found that musical sounds are
transmitted through all liquids.
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32. Zransmission of Musical Sounds through Solids. —
Professor Tyndall has shown the transmission of musical
sounds through solids by the following experiment. He
arranged a wooden rod thirty feet long so that it passed
through a window in the ceiling of the lecture-room into
the open air above. The lower end of the rod rested
upon a sounding-box. An assistant on the roof struck a
tuning-fork, but no sound could be heard from it until he
held the stem against the end of the wooden rod, when
the sounding-box at once gave out a musical sound. The
pitch of the sound was exactly that of the tuning-fork,
showing that the wood transmitted the vibrations without
alteration. By using different forks, notes of different
pitch were obtained. The results would have been the
same had the wooden rod been ten times as long.

An experiment first tried by Wheatstone and repeated
by Tyndall is even more striking. A piano was placed in
a room undemneath the lecture-room, separated from the
latter by two floors. Through the two floors passed a tin
tube 2} inches in diameter, with a wooden rod inside of it,
the end of which projected into the lecture-room. The
rod was clasped by India-rubber bands which completely
closed the tube. The lower end of the rod rested upon
the sounding-board of the piano. The piano was played,
and no sound was heard in the lecture-room ; but when a
violin was placed against the end of the rod, it became
musical, not with the vibrations of its own strings, but
with those of the piano. On taking away the violin, the
music ceased ; but when a guitar was put in its place, the
sounds were heard again ; and also when a sounding-box
was substituted for the guitar.. The end of the rod was
then placed against the sounding-board of a harp, and
every note of the piano was reproduced as before.

An ordinary music-box may be used instead of the piano
in this experiment.
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Musical sounds, then, like other sounds, are transmitted
unchanged through solids, liquids, and gases.

33. Sympathetic Vibrations.— On the sonometer stretch
two strings about three inches asunder. By means of a
key, alter the tension of the strings, continually sounding
both of them until they are brought into perfect unison.
Place a little paper rider upon the middle of one of them,
and agitate the other. The untouched string tosses off its
rider, showing that it is thrown into vibration.

Every experiment with the riders and a single string
described above (27) may be repeated with these two uni-
sonant strings. Let us, for example, damp one of the
strings at a point one fourth of its length from one of its
ends ; and let us place .the red and blue riders formerly
employed, not on the nodes and vibrating parts of the
damped string, but at points upon the other exactly oppo-
site to those nodes and vibrating parts. When the bow is
passed across the shorter segment of the damped string,
the four red riders on the adjacent string are unhorsed,
while the three blue ones remain tranquilly in their places.
Relax one of the strings so as to throw it out of unison
with the other. All efforts to unhorse the riders are now
unavailing. Strings, then, can readily take up from the
air those vibrations which they can communicate to it, —
that is, the vibrations which are synchronous to their own.

The influence of synchronism may be illustrated in a
still more striking manner by means of two  tuning-forks
which sound the same note. Place two such forks, mount-
ed on their resonant supports, upon the table, 18 inches
asunder, and draw the bow vigorously across one of them.
If now we stop the agitated fork, the sound is enfeebled,
but by no means quenched. The vibrations conveyed
through the air and through the wood have been taken up
by the untouched fork, and it is this fork which we now
hear. Attach a bit of wax to one of the forks, and sound
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it again ; the very slight change in the rate of vibration
has destroyed the sympathy between the two forks, and no
response is now possible. Remove the wax, and the un-
touched fork responds as before. In this experiment the
forks may be several feet apart. The vibrations may also
be communicated through the air alone. Stop one of the
forks, and cause the other to vibrate vigorously. Hold
the case of the vibrating fork in the hand, and bring one
of its prongs near the other fork, placing the prongs back
to back. Extinguish the sound of the agitated fork, and
the fork which a moment ago was silent continues to
sound, having taken up the vibrations of its neighbor,
which must have been transmitted to it through the
air.

Remove one of the forks from its resonant case, and
throw it into strong vibration. Held free in the air, its
sound is inaudible. But now bring it close to the silent
fork, and a full, mellow sound is heard, which is due, not
to the fork first agitated, but to its sympathetic neighbor.

Various other examples of the influence of synchronism
might be brought forward. If two clocks, for example,
with pendulums of the same period of vibration, be placed
against the same wall, and if one of the clocks be set going
and the other not, the ticks of the moving clock, trans-
mitted through the wall, will start its neighbor. The pen-
dulum, moved by a single tick, swings through a very
small arc, but it returns to the limit of its swing just in
time to receive another impulse. In this way the impulses
add themselves together so as finally to set the clock going,
and in precisely the same way the vibrating particles of
wood and air were enabled to cause the string and fork in
the above experiment to vibrate. It is by this timing of
impulses that a properly pitched voice can cause a glass to
ring, and that the sound of an organ ¢an break a particular
window-pane.
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When a body is thus thrown into vibration by its neigh-
bor, its vibrations are said to be sympathetic.

A body which could originate only one kind of vibration -
could thus intercept only one kind of vibration ; while
those which can originate vibrations of various periods can
intercept vibrations of all these periods. Plates and mem-
branes are capable of originating vibrations of the greatest
number of periods, and therefore of intercepting the great-
est number of vibrations.

SUMMARY.

When the vibrations of a sounding body take place at
regular intervals and often enough, they give rise to a
musical sound. In a noise the vibrations follow one another
at irregular intervals. (18.)

The pitch of the sound increases with the rapidity of the
vibrations. (19.)

The tuningfork is an instrument much used in the in-
vestigation of musical sounds. (20.)

By means of the sizen we may ascertain the number of
vibrations answering to any given pitch. (22.)

The length of the sound-wave decreases as the pitch
rises. (23.)

A string may vibrate in segments separated by nodes. (27.)

Plates and all sounding bodies may vibrate- in seg-
ments. (28.)

Sounding bodies always break up into segments so as to
start vibrations of several periods at the same time. (29.)

The blending of these vibrations gives to the sound its
quality or dang-tint. (30.)

Musical sounds are transmitted through solids, liquids,
and gases. (31, 32.)

Any body can intércept and reinforce those vibrations
which are synchronous with its own. (33.)
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THE SUPERPOSITION AND IN;I‘ERFERENCE OF SOUND-
WAVES.

34. The Superposition of Water-waves. —1It is well known
that a great variety of waves may exist together on the sur-
face of water. Thus in the ocean we may have the great
tidal wave ; upon the back of this, the billows raised by the
wind ; upon these, still smaller waves ; and upon these, in
turn, ripples of an endless variety of size and form. This
carving of the surface by waves and ripples has its limit only
in our powers of observation; yet every wave and every
ripple retains a distinct existence amid the numberless
other motions which disturb the water.

The law that governs this intermingling of innumerable
waves is that the resultant motion of every particle of water
is the sum of the separate motions given to i#f. Thus, any
particle acted upon by two forces, both tending to raise it,
will be lifted a distance equal to the sum of the distances
which the forces acting separately would raise it. If
acted upon by two forces tending to depress it, the particle
would descend a distance equal to the sum of the distances
which the forces acting singly would carry it. If one of
the forces tends to raise the particle, and the other to
depress it, the particle will move, in the direction of the
greater force, a distance equal to the difference of the
distances which the forces acting separately would carry
it.. By the sum of the motions, then, we mean the a/ge-
braic sum. .

-When two stones are cast into smooth water, zo or 30
feet apart, round each stone is formed a series of expand-
ing circular waves, every one of which consists of a ridge-
and a furrow. The waves at length touch, and then cross
one another, carving the surface into little eminences and

depressions. Where ridge coincides with ridge, we have
2% €
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the water raised to a double height; where furrow coin-
cides with furrow, we have it depressed to a double depth.
Where ridge coincides with furrow, we have the water re-
duced to its average level. The resultant motion of the
water at every point is, as above stated, the algebraic sum
of the motions impressed upon that point. And if, instead
of two sources of disturbance, we had ten, or a hundred, or
a thousand, the consequence would be the same: the law
above enunciated would still hold good.

Instead of the intersection of waves from two distinct
centres of disturbance, we may cause direct and reflected
waves from the same centre to cross each other. These
effects may be shown by reflecting upon a screen the light
from ripples of water in a pan. When mercury is em-
ployed, the effect is more brilliant still. Here, by a proper
mode of agitation, direct and reflected waves may be made
to cross and interlace, and then again to disentangle
themselves.

Figure 23 will give some idea of the beauty of these
effects. It represents the forms produced by the inter-
section of direct and reflected water-waves in a vessel.
The point of disturbance is marked by the smallest circle
in the figure, and is midway between the centre and the
circumference.

35. Superposition of Sound-waves. — In like manner a
great variety of sound-waves may exist together in the
air. For instance, in the playing of an orchestra all the
instruments are sending forth waves at the same time,
which traverse the air together ; and, though we cannot
see them, their separate existence is proved by the fact
that the ear readily distinguishes the quality and pitch of
the sound given by each instrument. In this way thou-
sands of waves may be transmitted through the air at the
same time without losing their individual character. The
same law holds good here as in the case of water-waves ;



SOUND. 35

namely, that every particle of air is affected by a motion
which is the algebraic sum of all the single motions im-
parted to it. The most wonderful thing of all is, that

the human ear, though acted upon only by a cylinder of
air not exceeding the thickness of a quill, can detect
all the components of the motion of each particle, and
thus single out any one sound from the confused mixture.
36. Coincidence and Interference of Sound.—1f the sound-
waves, in moving through the air, obey the'same laws as
water-waves, they ought, when meeting in such a way that
the compression of one coincides with the compression of
the other, or the extension of one with the extension of the
other, to increase the volume of the wave ; and, on the
other hand, when meeting in such a way that the com-
pression of one coincides more or less perfectly with the
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extension of the other, the volume of the wave ought
to be diminished. If the waves are exactly alike, and
meet in éxactly opposite phases, one ought to destroy the
other.

In Figure 24, for instance, suppose we have two tuning-

Fig. 24.

forks, 4 and B, vibrating at the same rate. Suppose that
both begin to vibrate at the same time, and that they
are placed the length of a wave apart. The fork 4 will
then be ready to start a wave as often as the wave start-
ed by B reaches it, and the compressions and exten-
sions of the successive waves, as they move on towards
C, will coincide, and thus increase the volume of the
sound.

Suppose the two forks 4 and B to be placed half the
length of a wave apart, as in Figure 25. Then the wave

Fig. 25.

sent out by B will have gone twice as far as 4 whenever
4 is ready to start a wave. Hence the compression of the
wave from 7 will coincide with the extension of that from
4, and the two waves will destroy each other, so that no
sound will result.

If, then, sound-waves interfere like water-waves, two
sounds ought sometimes to produce silence.
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In Figure 26, 0 f is a straight tube, which branches as
represented, and again unites in the tube g . If a tuning-
fork be made to vibrate at o, the sound on reaching / will
divide, a part running through the branch 2, and a part

through . If the two branches are of the same length,
both portions of the sound will reach p at the same time.
The branch 7 is made to slide over « &, so that it can be
lengthened at pleasure. If # be made the length of half
a wave longer than », no sound will be heard at g, if it
be drawn out the length of a whole wave, a sound will be
heard at 2. )

This experiment shows that two sounds may produce
silence.

The same fact can be illustrated by means of a vibrating
disc. A B (Figure 27) is a resonant tube ; that is, a tube
which increases the volume of sound by sympathetic vibra-
tions, as will be explained hereafter (57). This tube it
divided at B. We have already learned that, when a disc
is vibrating, it breaks up into parts separated by nodal
lines (28), and that the parts lying side by side are vibrat-
ing in opposite directions. If then the mouths of the
tube 4 B are placed over two such parts, the sound-waves
will enter the tube in opposite phases, and it is found
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on trial that the tube does not resound. If, however, the
tube is placed over alfernafe parts of the disc, which are
of course vibrating in the same
direction, it resounds power-
fully.

The feebleness of the sound
of a tuning-fork when held in
the hand is due in a great
measure to interference. The
prongs always vibrate in oppo-
site directions, one producing
a compression where the other
produces an extension, and a
destruction of sound is the
consequence. By passing a
pasteboard tube over one prong
of the fork, its vibrations
are in part intercepted, and the sound becomes louder.
There are certain positions in which the sound of one
prong is wholly destroyed by that of the other. These
positions are easily found by making the fork vibrate, and
then turning it round before the ear. When the back or
the side of a prong is parallel to the ear, the sound is
heard ; when the corner of a prong is held toward the ear,
the sound is utterly destroyed. '

This case of interference may be rendered more striking
by means of a resonant jar. In Figure 28 the jar is of
such a length as to resound powerfully to the fork. Rotate
the fork above the mouth of the jar. When the back or
sides of the prongs face the jar, a loud resonance is ob-
tained ; but when the corners of the fork face the jar, there
is no sound.

When the corner of the fork is over the jar, slide a
pasteboard tube over one prong so as to cut off its vibra-
tions, and the jar begins to resound.

Fig. 27.
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37. Beats. — If two tuning-forks which vibrate nearly at
the same rate be made to sound together, it will be noticed
that the sound, instead of being continuous, rises and falls
in quick succession, producing what are called deass. Sup-
pose one of the forks vibrates 240 times in a second, while
hte other vibrates 246 times. The first will then make 40
vibrations while the second makes 41. The sound-waves
which they generate will at first nearly coincide in the same
phases ; but they begin to interfere more and more, until
the first has executed 20 vibrations, when they meet in
opposite phases. The interference will then become less
and less, until the first has made 4o vibrations, when the
two sets of waves will meet again in the same phase. In
this way a beat will be produced at every 4oth vibration, or
6 in a second, since during the first 20 vibrations the
sound is growing weaker and weaker, while during the
second 20 it is growing louder and louder.

Beats are thus produced whenever two musical sounds
of nearly the same pitch are uttered together, and the
number of beats per second is always equal lo the difference
between the two rales of vibration.
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These beats may be il-
lustrated by means of two
organ-pipes (Figure 29) of
the same length. While
the two are sounding in
unison, if the finger be
brought near the mouth of
one so as to lower its rate
of vibration, beats will be
heard.

Beats may also be illus-
trated by means of sound-
ing flames (74). Enclose
two such flames in tubes
provided with telescopic
sliders. If the tubes are
made to differ consider-
ably in length, no beats are
heard, because the notes
produced are not nearly
enough in unison. Gradually lengthen the shorter tube by
raising the slider. At first rapid beats will be heard ; but
they will grow slower and slower, until the flames are
brought into unison. Continue to raise the slider, and the
beats are heard again, slow at first, but becoming more
and more rapid, until they finally disappear.

38. Resultant Tones.— According to Tyndall, resultant
tones may be best illustrated by means of singing flames.
For this purpose use two tubes, 108 and 1145 inches long.
In addition to the shrill tones produced by the flames, a
very deep tone may be detected. Such a tone is called a
resultant tone, since it in some way results from the other
two. On lengthening one of the tubes by means of a
slider, the resultant tone gradually rises until it becomes
quite distinct ; on shortening the tube, it falls again,
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These resultant tones may also be produced with the
siren. In this case, however, as in all others, the primary
notes must be forcible, or no resultant is heard. When
the two series of holes numbering 8 and 12 are opened,
the resultant tone has the same pitch as would be given if
a series of 4 holes were open. If we open two series of 12
and 16 holes, the resultant tone is again the same as would
be given by a setries of 4 holes. With two series of 1o and
16 holes, the resultant is the same as would be given by a
series of 6 holes. Thus, in general, it is found that ZZe
pitch of the resultant tone answers to a rate of vibration equal
to the difference of the rates of the two primaries. From this
fact these tones have been called dzfference tones.

39. The Explanation of Resultant Tones. — The cele-
brated Thomas Young thought that these resultant tones
were due to the blending of rapid beats, which linked
themselves together like the periodic impulses of an ordinary
musical note. This explanation was in harmony with the
fact that the number of the beats, like that of the vibra-
tions of the resultant tone, is equal to the difference be-
tween the two sets of vibrations which produce the beats.
This explanation, however, is insufficient. The beats tell
more forcibly upon the ear than any continuous sound ;
for when two notes of the same intensity produce beats,
the amplitude of the vibrating air-particles is at times de-
stroyed, and at times doubled. But by doubling the am-
plitude we of course increase the intensity of the sound ;
so that beats can be plainly heard when each of the two
sounds that produce them has ceased to be audible.

If, therefore, the resultant tones are due to the beats of
their primaries, they ought to be heard, even when the
primaries are feeble ; but this is not the case. This fact
led Helmholtz to investigate the subject anew. We have
already seen that when several sounds traverse the same
air, each particular sound passes through the air as if it
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alone were present, thus asserting its own individuality,
and nothing more. By mathematical investigation Helm-
holtz found that this is in strictness true only when the
amplitudes of the oscillating particles are infinitely small ;
but it is also practically true when the disturbances are ex-
tremely small. It is zof true, however, after they have
passed a certain limit. Vibrations which produce a large
amount of disturbance give birth to secondary waves, and
it is these which produce resultant tones. Helmholtz
found further that there should be also resultant tones
formed by the swm of the primaries, as well as by their dif-
ference. He thus discovered his summation fones before he
had heard them ; and, bringing his result to the test of ex-
periment, he found that these summation tones have a real
existence. They cannot be explained by Young’s theory,
but they find a complete elucidation in that of Helm-
holtz.

We see then that a coalescence of musical sounds is far
more complicated than one would at first suppose. For
instance, in the music of an orchestra, not only have we
the fundamental tones of every pipe and of every string,
but we have the overtones of each, sometimes audible as
far as the sixteenth in the series. We have also resultant
tones ; both difference tones and summation tones. We
have fundamental tone interfering with fundamental tone ;
we have overtone interfering with overtone ; we have re-
sultant tone interfering with resultant tone ; and, besides all
this, we have the members of each class interfering with
the members of every other class. The imagination is
baffled in the attempt to conceive the condition of the at-
mosphere through which these sounds are passing. The
aim of music, through the centuries during which it has
ministered to the pleasure of man, has been to arrange
matters so that the ear shall not suffer from the discord-
ance produced by this multitudinous interference. The
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musicians engaged in this work knew nothing of the phys-
ical facts and principles involved in their efforts; they
knew no more about it than the inventors of gunpowder
knew about the law of atomic proportions. They tried and
tried till they obtained satisfactory résults, and now, when
the scientific mind is brought to bear upon the subject,
these results are found to be in harmony with natural
law.

SUMMARY.

A multitude of sound-waves may traverse the air without
losing their character, in the same way as a multitude of
water-waves may traverse the surface of the ocean.

When several sets of waves pass through water or air,
the motion of every particle is the algebraic sum of the
several motions impressed upon it. (34, 35.)

In the case of water, when the crests of one system of
waves coincide with the crests of another system, higher
waves will be the result of the coalescence of the two sys-
tems. But when the crests of one system coincide with the
furrows of the other system, the two systems partially or
wholly destroy each other. (34.)

The same is true of sonorous waves. If in two systems
of sonorous waves compression coincides with compression,
and extension with extension, the sound produced by such
coincidence is louder than that produced by either system
taken singly. But if the compressions of the one system
coincide with the extensions of the other, a partial or
total destruction of both systems is the consequence. (36.)

This mutual destruction of two systems of waves is called
interference.

When two musical sounds of nearly the same pitch are
sounded together, the flow of the sound is disturbed by
beats. (37-)
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These beats are due to the alternate coincidence and
interference of the two systems of sonorous waves. If the
two sounds be of the same intensity, their coincidence pro-
duces a sound of four times the intensity of either, while
their interference produces absolute silence.

The effect, then, of two such sounds in combination is a
series of shocks, which we have called bdeass, separated
from one another by a series of pauses.

The rate at which the beats succeed one another is equal
to the difference between the two rates of vibration. (37.)

The law of the superposition of vibrations is strictly true
only when the amplitudes are exceedingly small. When
the disturbance of the air by a sounding body is so violent
that the law no longer holds good, secondary waves are
formed. These secondary waves give rise to reswltant
tones.  (38.)

Resultant tones are of two kinds, — the one class corre-
sponding to rates of vibration equal to the difference of
the rates of the two primaries ; the other class correspond-
ing to rates of vibration equal to the sum of the two pri-
maries. The former are called difference tones,; the latter,
summation tones. (39.)

CHORDS AND DISCORDS.

40. Combination of Musical Sounds. — Take two tuning-
forks, each of which gives 256 vibrations in a second, and
set themt vibrating. The two musical sounds flow together
in a perfectly blended stream, and produce what is called
unison. In this instance the ratio of the vibrations is
0

Take now two forks, one of which makes 256 vibrations
a second, while the other makes s12. For every wave,
therefore, sent to the ear by the one fork, two waves are
sent by the other, and the two notes blend hérmoniously.
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This combination, as we have seen, is called an octave
(24) ; and the ratio of the vibrations is 1 : 2.

Take another pair of forks, which give 256 and 334
vibrations in a second. The combination of the two
sounds is very pleasing to the ear, but the consonance is
hardly so perfect as in the case of the octave. There is a
barely perceptible roughness here, which is absent when
a note and its octave are sounded ; but it is too slight to
render the combination disagreeable. The ratio of the
vibrations is 2 : 3; that is, one of the forks sends two
waves and the other three to the ear in the same interval
of time. This is the most pleasing combination next to
the octave, and is called a f/74.

If we take two forks whose vibrations are in the ratio
3 : 4, and sound them together, the interval is called a
Jourth. This combination is still agreeable, but not quite
so agreeable as the fifth.

Thus, then, with perfect unison the ratio of the vibra-
tions is 1 :1; with a note and its octave it is 1:2;
with a note and its fifth it is 2 : 3 ; and with a note and its
fourth it is 3 : 4. We have thus gradually developed the
remarkable law that 7 combination of two notes is the more
pleasing to the ear, the smaller the two numbers which express
the ratio of their vibrations.

Take now two forks whose rates of vibration are in the
ratio 4 : 5, or a major third apart; the harmony is less
perfect than in any of the cases which we have examined.
With the ratio 5 : 6, or that of a mznor third, it is usually
less perfect still ; and we now approach a limit beyond
which a musical ear will not tolerate the combination of
two sounds. If, for example, we sound together two forks
whose vibrations are in the ratio of 13 : 14, their combina-
tion is altogether discordant.

An agreeable combination of two notes is called a
chord ; a disagreeable one, a discord.
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41. The Explanation of Chords and Discords. — Euler’s
famous explanation of the nature of chords is as follows :
We take delight in order ; it is pleasant to us to observe
“means co-operant to an end.” But then the effort to dis-
cern order must not be so great as to weary us. If the
relations to be disentangled are too complicated, though
we may see the order, we cannot enjoy it. The simpler
the terms in which the order expresses itself, the greater is
our delight. Hence the superiority of the simpler ratios
in music over the more complex ones. Consonance, then,
according to Euler, was the pleasure derived from the per-
ception of order without weariness of mind.

But in this theory it was overlooked that Pythagoras,
who first experimented on these musical intervals, knew
nothing about rates of vibration. It was forgotten that the
vast majority of those who take delight in music, and who
have the sharpest ears for the detection of a dissonance,
know nothing whatever about rates or ratios. And even
the scientific man who is fully informed upon these points
has his pleasure in no way enhanced by his knowledge.
Euler's explanation, therefore, does not satisfy the mind ;
and it was reserved for Helmholtz to assign the physical
cause of consonance and dissonance.

Tyndall illustrates Helmholtz’s explanation of conso-
nance and dissonance by the following experiment. He
converts two jets of burning gas into singing flames by
enclosing them within two tubes. The tubes are of the
same length, and the flames of course sing in unison. By
means of a slider, he lengthens slightly one of the tubes,
and gets beats which succeed one another so slowly that
they can be counted with ease. He lengthens the tube still
farther, and the beats become more rapid. He continues
to lengthen the tube, and the beats pass into a rattle, which
differs only in rapidity from the slow beats heard at first.
Here we have, from first to last, nothing but an unbroken
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succession of beats. We begin slowly; we gradually in-
crease the speed, until the succession is so rapid as to pro-
duce that peculiar grating effect which is called dissonance.
If now we reverse the process, and pass from these quick
beats to slow ones, the beats separate from one another
more and more, until finally they are slow enough to be
counted. Thus these singing flames enable us to follow
the beats with certainty until they cease to be beats, and
are converted into dissonance.

This experiment proves conclusively that dissonance
may be produced by a rapid succession of beats.

Helmbholtz found that beats which succeed one another
at the rate of 33 per second give the greatest possible dis-
sonance. When the beats are slower than 33, they are
less disagreeable. They may even become pleasant through
imitating the trills of the human voice. With higher rates
than 33, the roughness also lessens, but it is still dis-
cernible when the beats number 100 a second. The
limit at which they totally disappear is 132.

Does this theory accord with the facts of observation?
We have found certain combinations of notes agreeable,
and others disagreeable. Can this be explained on the
theory of Helmholtz? We must bear in mind that musi-
cal instruments usually give overtones, and that these also
interfere to produce beats. Let us start with the middle C
of a piano, and examine its chords. The following table
gives the rates of the vibrations of the fundamental tones
and the first five overtones of the octave : —

1 ; 2
Fundamental tone 264 528 Fundamental tone.
Overtones . . 1. 528 1,056
5 LT S ey 1,584
o R I 0,50 2,112
G e A T 320 2,640

€ « + 5. 1,584 3,168
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Comparing these tones in couples, we find it impossible
to get out of the two series a pair whose difference is less
than 264. Hence, as the beats cease to be heard as dis-
sonance when they reach 132, there can be no dissonance
in this combination. This octave, therefore, is an abso-
lutely perfect consonance.

Let us now take the interval of a fifth. We have the
following fundamental tones and overtones:—

2 : 3

Fundamental tone 264 396 Fundamental tone.
Overtones . . 1. 528 792
“ 5\ o B 9P 1,188
4 . . 3. 1,056 1,584
£ 5 oAb IG5 1,980
s . . 5. 1,584 2,376

The lowest difference here is 132, which corresponds to
the vanishing point of the dissonance. The interval of a
fifth in this octave is, therefore, all but perfectly free from
dissonance.

Let us now take the interval of a fourth.

3 : 4

Fundamental tone 264 352 Fundamental tone.
Overtones . . 1. 528 704
“ S 2IRT 02 1,056
ad o o b IHS 1,408
& . . 4. 1,320 1,760
& . . 5. 1,584 2,112

Here we have a series of differences each equal to 88, but
none lower. This number, though within the vanishing
limits of the beats, is still so high as to allow very little
roughness.  Still the interval is clearly inferior to the
fifth.

Again, let us take the major third. Here we have —
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SR
Fundamental tone 264 330 Fundamental tone.
Overtones I. 528 660

& - 2. 792 990

( . 3. 1,056 1,320

& k1320 1,650

& 5. 1,584 1,980

There are here several differences, each equal to 66. The
beats are nearer the maximum dissonance than in the last
case, and the consonance, therefore, is less perfect..

We will now try the minor third. Here we have —

5 : 6
Fundamental tone 264 316.8 Fundamental tone.
Overtones . . I. 528 633.6
§¢ 5 I 80 oy 950.4
& 8 310056 1,267.2
£ i AT, 320 1,584.0
& 2R RS EES B 1,900.8

Between several pairs of these tones we have a differ-
ence of 53 vibrations. This difference implies a greater
disturbance by beats than in the case of the fifth, or of the
fourth, or of the major third. Hence the minor third is
inferior as a consonance to all those intervals.

Thus do we find that, as the numbers expressing the
ratio of the vibrations become larger, the disturbing influ-
ence of the beats enters more and more into the interval.
The result, it is manifest, entirely harmonizes with the
explanation that refers dissonance to beats.

42. The Musical Scale. — In choosing a series of sounds
for combination two by two, the simplicity alone of the
ratios would lead us to fix on those expressed by the num-
bers 1, %, %, 8, 3, 2; these being the simplest ratios that
we can have within an octave. But when the notes repre-

3 D
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sented by these ratios are sounded in succession, it is
found that the intervals between 1 and 2, and between §
and 2 are wider than the others, and require the inser-
tion of a note in each case. The notes chosen are such
as form chords, not with the fundamental tone, but with
the note $ regarded as a fundamental tone. The ratios of
these two notes with the fundamental are § and . In-
serting these, we have the eight notes of the natural or
diatonic scale expressed by the following names and

ratios : —
Names. C. D. E. F. G. A. B. C.
Intervals. 1st. 2d. 3d. 4th. sth. 6th. 7th. 8th.
Rates of vibration. 1, 25 % 5 5 B 2

Multiplying these ratios by 24 to avoid fractions, we ob-
tain the following series of whole numbers, which express
the relative rates of vibration of the notes of the diatonic
scale.

24, 27, 39, 32, 36, 40, 45, 48.

The meaning of the terms third, fourth, fifth, &c., which
we have already so often applied to the musical intervals,
is now apparent ; the term has reference to the position of
the note in the scale.

SUMMARY.

When the combination of two notes is agreeable, they are
said to form a ckord; when their combination is disagree-
able, a discord.

The simpler the ratio of the vibrations of two notes,
the more agreeable the chord which they form. (40.)

Dissonance is due to beats.

It is greatest when the beats occur at the rate of 33 a
second, and wholly disappears when they occur at the rate
of 132 a second. (41.)
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MUSICAL INSTRUMENTS,

TRANSVERSE VIBRATION OF STRINGS AND STRINGED
INSTRUMENTS.

43. In many musical instruments the sounds are pro-
duced by the vibrations of strings or wires. These are
called stringed instruments.

We proceed now to examine the laws according to
which strings vibrate. Fig. 30.

44. A String vibrating alone
gives a very feeble Sound. — In
Figure 30 4 B is a wooden bar
placed across an iron bracket
C. mn is an iron bar hung
from 4B by means of ropes ;
and s¢ is a steel wire which is
stretched by a weight. If we
take hold of the middle of the
string, pull it to one side and
let it go again, its elasticity will
cause it to vibrate, but the
sound it gives out can scarcely
be heard. '

If a similar string stretched
by an equal weight be hung
from a sounding-box 4.8 (Fig-
ure 31), and be set vibrating, w
the sound is heard distinctly.

45. Sounding-Boards.—From
these experiments we see that :
some kind of a sounding-board is necessary in all stringed
instruments.

It is not the chords of a piano, or harp, or violin, that
throw the air into sonorous vibrations. It is the large sur-
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faces connected with the strings, and the air enclosed by

these surfaces. The

merit of such instru--
ments depends mainly

upon the quality and

arrangement of their

sounding-boards.

The violin, for ex-
ample, ismade of wood
of the most perfect
elasticity. The strings
pass from the tail-
piece of the instru-
ment over the bridge
to the pegs by which
they are tightened.
The two feet of the
bridge rest upon the
most yielding part of
the body of the violin ;
that is, the portion be-
tween the two_fshaped openings. One foot is fixed over a
short rod, the sound-post, which extends across to the back
of the instrument. This foot is thereby made stiff, and it
is mainly through the other foot, which is not thus sup-
ported, that the vibrations of the strings are conveyed to
the wood and thence to the air within and without.

The sonorous quality of the wood is mellowed by the
molecular changes which take place with the lapse of time.
The very act of playing, too, appears to make the mole-
cules of the wood conform more readily to the vibrations
of the strings, and thus improves the instrument.

46. Laws of the Vibration of Strings. — The laws of the
vibration of strings are best investigated with the sonome-
ter, which has already been described. The first law has
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already been found, and is stated thus : Z%e rapidity of the
vibrations is inversely as the length of the string.

47. The Rapidity with which a String vibrates varies as
the Square Root of the Weight which stretches it. — If the
string B B (Figure 32) be stretched with a weight of one
pound and made to vibrate, a note of a certain pitch is ob-

Fig. 32.
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tained. If the weight be made four pounds, the pitch will
be raised an octave ; if sixteen pounds, it will be raised
another octave; and so on. The rapidity of the vibra-
tions, then, varies as the square root of the weight by
which the string is stretched.

48. The Rapidity with which a String vibrates varies
inversety as its Thickness. — If strings of the same material
but of different thickness be stretched over the bridges by
equal weights, the thicker strings will be found to give the
lower notes. If one string is just twice as thick as an-
other, its note will be an octave lower. In general, then,
other things being equal, the rapidity of the vibrations of a
string varies inversely as its thickness.

49. The Rapidity with which a String vibrates is inversely
as the Square Root of its Density. — It is found that if a plat-
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mmum and an iron wire of the same length and thickness
be stretched by equal weights, they will not give notes of
the same pitch. The greater the density of the string, the
lower the pitch of the note which it gives. It is found on
trial that the pitch of the sound rises as the square root of
the density diminishes.

The last two laws taken together may be stated thus:
The rapidity with whick strings vibrale is inversely propor-
tional to the square root of their weight.

In one class of stringed instruments, like the violin,
violoncello, and guitar, notes of a great variety of pitch are
obtained from a few strings by fingering the strings so as
to change their length. In another class, like the harp and
piano-forte, many strings are used varying in length and
thickness, each of which gives but one note.

SUMMARY.

Musical sounds may be produced by the transverse vi-
brations of strings. (43.)

The sound of a vibrating string must, however, be en-
forced by a sounding-board, in order to become audible.
(44, 45.)

The sonometer is an instrument for investigating the
laws of vibrating strings. (46.)

These laws are three in number : —

(1.) The rapidity with which a string vibrates varies
inversely as its length. (46.)

(2.) The rapidity with which a string vibrates varies as
the square root of the weight which stretches it. (47.)

(3.) The rapidity with which a string vibrates is inversely
as the square root of its weight. (48, 49.)

In some stringed instruments many notes are produced
by few strings ; in others, there are as many strings as
there are notes given. (49.)
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LONGITUDINAL VIBRATION OF STRINGS, RODS, AND
COLUMNS OF AIR; AND WIND INSTRUMENTS.

5o. The vibrations of strings which we have studied
thus far take place at right angles to the length of the
string. A string may also vibrate in the direction of its
length. This may be shown by drawing a piece of resined
leather along the wire of a sonometer. It will be noticed
that the sound is much shriller than when the same wire is
made to vibrate transversely. In this case it is the elastic
force acting among the molecules of the wire which causes
it to vibrate; and, owing to the intensity of this elastic
force, the vibrations are much more rapid than in the other
case. ;

s1. The shorter the Wire, the more rapid are ils Longitu-
dinal Vibrations.— Let one end of a long iron wire be
firmly fastened to a fixed wooden sounding-box, and the
other end wound round a peg, which may be turned by a
key so as to stretch the wire more or less. Pass a piece
of resined leather to and fro along the wire, and a musical
sound is heard. Put a bridge under the middle of the
wire, and rub one of its halves. The sound heard is the
octave of that heard at first, showing that the vibrations
are twice as rapid. Place the bridge so as to cut off one
fourth of the wire, and rub that fourth. The sound pro-
duced is the octave of the last, showing that the vibrations
are four times as rapid as at first.

We see, then, that the shorter the wire the more rapid
its longitudinal vibrations.

52. Zhe Rapidily of the Longitudinal Vibrations is inde-
Dpendent of the Tension of the String. — Remove the bridge,
so that the iron wire may vibrate throughout its entire
length. Turn the key so as to change the tension of
the wire, and again rub it. The pitch of the note does
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not change, showing that the rapidity of the longitu-
dinal vibrations is independent of the tension of the
wire.

53. How 1o find the Comparative Velocity of Sound in Wires
of Different Materials.—1f a brass wire and an iron wire of
the same length and thickness be made to vibrate longitu-
dinally, their tones are not the same,—that of the iron wire
being considerably the higher of the two. In the case of
these wires the sound is not produced by the wire itself,
but by the sounding-box. As the wire vibrates longitudi-
nally, its end alternately pushes and pulls upon the sound-
ing-box, and thus throws the air within it into vibrations.
This pushing and pulling is due to the passage of the
sound-pulse to and fro along the whole wire. The time
taken by the pulse in running the length of the wire and
back is that of a complete vibration of the wire. In this
time the wire gives one pull and one push to the box at its
end, and one vibration to the air within it. The faster the
pulse passes along the wire, the higher the note produced.
If the brass wire be shortened until it gives a note of the
same pitch as that given by the iron wire, it is evident that
the sound-pulse traverses each of the wires in the same
time. The length of the wires will be found to be in the
ratio of 11 to 17, showing that sound travels only :—; as fast
in brass as in iron. ‘

54. Zhe Longitudinal Vibrations of Rods free at one End.
— A smooth wooden or metallic rod with one of its ends
fixed in a vise yields a musical note when rubbed with
resined leather. When a rod fastened in this way yields
its fundamental note (29), it simply lengthens and short-
ens in quick succession. When rods of different lengths
are compared, the pitch of the note is found to increase as
the length diminishes. By taking advantage of this fact,
a musical instrument has been constructed, such as is
shown in Figure 33, which produces notes of different
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pitch by the longitudinal vibrations of wooden rods of
different lengths.  Fig. 33.

55. Longitudinal Vibrations of ‘
Rods free at both Ends.— Clasp a
long glass tube at its centre with
one hand, and rub a wet cloth over
one of its halves with the other.
A musical sound is produced. A
solid glass rod of the same length
will give the same note. In this
case the centre of the tube or rod is
anode, and the two halves lengthen
and shorten in quick succession.
This lengthening and shorten-
ing of the halves of the rod is shown by the apparatus
represented in Figure 34. @ & is a brass rod held at
its centre by the clamp s, and an ivory ball hung by two
strings from the points 7 and 7 rests against the end & of

Fig. 34.

the rod. On drawing a piece of resined leather gently

over the rod near g, it is thrown into longitudinal vibra-

tions. The centre s is at rest, but the motion of the ivory

ball shows that the end & is in a state of tremor. Rub the

rod more briskly, and its vibrations become more intense.
3*
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and the ivory ball is thrown off violently whenever it
comes in contact with the end of the rod.

If a long glass tube be held at the centre, and one half
of it be rubbed briskly with a wet cloth, the strain upon
the glass caused by the longitudinal vibrations may be
sufficient to shiver the other end, as shown in Figure 35.

56. How to find the Velocity of Sound
Fig. 35. in -different Solids,—In all cases the
longitudinal vibrations of rods are pro-
duced by the passage of the sound-
pulse to and fro along them. The
pitch of the note given by rods of the
same length depends upon the rapidity
with which the pulse passes. The ve-
locity of sound in different solids can
be compared by means of rods free at
both ends, as well as by means of wires.
We have only to take rods of the dif-
ferent solids, of such lengths that they
will give notes of the same pitch, and
these lengths will be in the inverse ratio
of the velocities required.

57. Resonance.— When a tuning-fork
is detached from the sounding-box
and made to vibrate, it can hardly be heard. Let, now,
the fork be held over a glass jar 4 B (Figure 36)
some 18 inches deep, and the sound is still very faint.
Keep the fork in this position, and pour water with the
least possible noise into the jar. As the column of air
under the fork becomes shorter, the sound becomes
louder ; and when the water has reached a certain level, it
bursts forth with great power. Continue to pour water
into the jar, and the sound becomes weaker and weaker,
until it is as faint as at first. Pour the water carefully out,
and we reach a point where the sound is reinforced again.
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In this way we find that there is one particular length of
the column of"air which causes the fork above it to give

Fig. 36.

the loudest possible sound. This reinforcement of sound
is called resonance.

By trying tuning-forks of
different pitch, we find in
this way a column of air
for each which gives the
greatest resonance. These
columns are of different
lengths, becoming shorter
as the forks vibrate faster.

Figure 37 shows the rela-
tive lengths of jars which
give the greatest resonance
for tuning-forks vibrating 256, 320, 384, and 512 times in
a second.

Fig. 37.




6o SOUND.

58. The Length of the Column of Air which resounds to
a vibrating Fork is equal to one fourth the Length of the
Wawve produced by the Fork.— The greater volume of sound
when the fork is vibrating over a resonant jar can be due
only to the greater amount of motion communicated to the
air. When is the fork enabled thus to increase the mo-
tion ? )

We have seen that a fork vibrating 256 times a second
produces a sound-wave 4 feet 4 inches long (23). In Fig-
ure 38, suppose a prong of the fork to be vibrating between

Fig. 38.

R0 inches ->C

the points @ and 4. In going from @ to &, the prong gen-
erates half a sound-wave ; and when it reaches 4, the fore-
most point of the wave will be at
¢, 2 feet 2 inches from the fork.
What then is the length of the
column of air which resounds most
powerfully for this fork? By
measurement we find it to be 13
inches. But the whole length of
the sound-wave produced by the
fork is 52 inches. Hence the
length of the column of air which
resounds for this fork is one fourth
the length of the sound-wave pro-
BT duced by the fork. We find the
same to be true in the case of every fork.

sayous g7
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59. Cause of Resonance. — Suppose now the prong of
the fork to be vibrating over the jar 4 B (Figure 39).
While the prong is moving from @ to &, the compression
which it produces runs to the bottom of the jar, where it is
reflected ; and as the distance down and back is 26 inches,
the reflected wave will reach the fork just as it is on the
point of returning from & to @. The extension of the wave
is caused by the retreat of the prong from & to e, and wili
also run to the bottom of the jar and back in time to over-
take the prong just as it reaches the point @. If now the
prong were to remain at @, the molecules of air on reach-
ing it would rebound, and thus produce a compression of
the air in the jar ; but just as they are ready to rebound,
the prong begins to move downward, and gives them a
push. Now, as this push is given every time just as they
are about to rebound, it adds more and more to their
motion ; much in the same way as a heavy ball hung by a
string may be made to swing through a great distance by
a succession of very slight pushes, provided they are so
timed as to act upon the ball just as it is ready to retreat.
If the pushes are not thus timed, they are as likely to
check the motion as to increase it. So in the case of the
resonant jar ; the vibrations of the column of air would be
as likely to be checked as increased, if they were not syn-
chronous with those of the fork. It is thus seen that the
vibrations of the fork are perfectly syncironous with (that
is, take place in the same time with) those of the column
of air 4 5.

60. Savart's Illlustration of Resonance. — If a bow be
drawn across the edge of a bell (Figure 40), it gives out
a musical sound. If now the open mouth of a cylinder
closed at the other end be brought near one of the vibrat-
ing parts of the bell, the sound is greatly reinforced. If
the cylinder be alternately removed and brought near, the
sound sinks and swells in a striking manner. If it be
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allowed to sink until it cannot be heard, and the cylinder
be again brought near, the sound becomes audible again.

Fig. 40.

61. Further Facls concerning Resonance, — “The reso-
nance of caves and of rocky enclosures is well known.
Bunsen notices the thunder-like sound produced when one
of the steam jets of Iceland breaks out near the mouth of
a cavern. Most travellers in Switzerland have noticed the
deafening sound produced by the fall of the Reuss at the
Devil's Bridge. The noise of the fall is raised by reso-
nance to the intensity of thunder. The sound heard when
a hollow shell is placed close to the ear is a case of reso-
_ nance. Children think they hear in it the sound of the
sea. - The noise is really due to the reinforcement of the
feeble sounds with which even the stillest air is pervaded.
By using tubes of different lengths, the variation of the
resonance with the length of the tube may be noticed.
The channel of the ear itself is also .a resonant cavity.
When a poker is held by two strings, and when the fingers
of the hands holding the poker are thrust into the ears, on
striking the poker against a piece of wood a sound js
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heard as deep and sonorous as that of a cathedral bell.
When open, the channel of the ear resounds to notes
whose periods of vibration are about 3,000 per second.
This has been shown by Helmholtz ; and a German lady
named Seiler has found that dogs which howl to music are
particularly sensitive to the same notes.” (Tyndall.)

62. A Column of Air may be made to vibrate by blowing
across the End of a Tube.— Select two jars, and two tuning-
forks which will cause them to resound. Cause both forks
to vibrate, and hold them both over one of the jars. Only
one of them is heard. Hold them both over the other jar,
and the other fork alone is heard. Each jar selects that
fork for reinforcement whose vibrations are synchronous
with its own. Instead of two forks, two dozen might be
held over either of these jars, and from the medley of
pulses thus generated the jar would select and reinforce
the one which corresponds to its own period of vibration. -

Blow now across the open mouth of this same jar, or
across the mouth of a glass tube of the same length as
the jar, and 4 of an inch in diameter (Figure
41). A fluttering of the air is thus produced ; T4
in fact, a medley of ‘pulses is generated at the
mouth of the tube. The tube selects the pulse
which is synchronous with its own vibration,
and reinforces it so that it becomes a musical
sound. The sound is the same as that pro-
duced by the proper tuning-fork he<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>